Structure of the human lipid-gated cation channel TRPC3

  1. Chen Fan
  2. Wooyoung Choi
  3. Weinan Sun
  4. Juan Du  Is a corresponding author
  5. Wei Lu  Is a corresponding author
  1. Van Andel Institute, United States
  2. Vollum Institute, United States

Abstract

The TRPC channels are crucially involved in store-operated calcium entry and calcium homeostasis, and they are implicated in human diseases such as neurodegenerative disease, cardiac hypertrophy, and spinocerebellar ataxia. We present a structure of the full-length human TRPC3, a lipid-gated TRPC member, in a lipid-occupied, closed state at 3.3 Angstrom. TRPC3 has four elbow-like membrane reentrant helices prior to the first transmembrane helix. The TRP helix is perpendicular to, and thus disengaged from, the pore-lining S6, suggesting a different gating mechanism from other TRP subfamily channels. The third transmembrane helix S3 is remarkably long, shaping a unique transmembrane domain, and constituting an extracellular domain that may serve as a sensor of external stimuli. We identified two lipid binding sites, one being sandwiched between the pre-S1 elbow and the S4-S5 linker, and the other being close to the ion-conducting pore, where the conserved LWF motif of the TRPC family is located.

Data availability

The cryo-EM density map and coordinate of TRPC3 have been deposited in the Electron Microscopy Data Bank (EMDB) accession number EMD-7620, and in the RCSB Protein Data Bank (PDB) accession code 6CUD.

The following data sets were generated

Article and author information

Author details

  1. Chen Fan

    Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Wooyoung Choi

    Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Weinan Sun

    Vollum Institute, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Juan Du

    Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, United States
    For correspondence
    juan.du@vai.org
    Competing interests
    The authors declare that no competing interests exist.
  5. Wei Lu

    Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, United States
    For correspondence
    wei.lu@vai.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3009-1025

Funding

Van Andel Research Institute

  • Wei Lu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Leon D. Islas, Universidad Nacional Autónoma de México, Mexico

Version history

  1. Received: March 21, 2018
  2. Accepted: May 2, 2018
  3. Accepted Manuscript published: May 4, 2018 (version 1)
  4. Version of Record published: May 24, 2018 (version 2)
  5. Version of Record updated: October 3, 2019 (version 3)

Copyright

© 2018, Fan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,588
    Page views
  • 872
    Downloads
  • 96
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chen Fan
  2. Wooyoung Choi
  3. Weinan Sun
  4. Juan Du
  5. Wei Lu
(2018)
Structure of the human lipid-gated cation channel TRPC3
eLife 7:e36852.
https://doi.org/10.7554/eLife.36852

Share this article

https://doi.org/10.7554/eLife.36852

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Karolina Honzejkova, Dalibor Kosek ... Tomas Obsil
    Research Article

    Apoptosis signal-regulating kinase 1 (ASK1) is a crucial stress sensor, directing cells toward apoptosis, differentiation, and senescence via the p38 and JNK signaling pathways. ASK1 dysregulation has been associated with cancer and inflammatory, cardiovascular, and neurodegenerative diseases, among others. However, our limited knowledge of the underlying structural mechanism of ASK1 regulation hampers our ability to target this member of the MAP3K protein family towards developing therapeutic interventions for these disorders. Nevertheless, as a multidomain Ser/Thr protein kinase, ASK1 is regulated by a complex mechanism involving dimerization and interactions with several other proteins, including thioredoxin 1 (TRX1). Thus, the present study aims at structurally characterizing ASK1 and its complex with TRX1 using several biophysical techniques. As shown by cryo-EM analysis, in a state close to its active form, ASK1 is a compact and asymmetric dimer, which enables extensive interdomain and interchain interactions. These interactions stabilize the active conformation of the ASK1 kinase domain. In turn, TRX1 functions as a negative allosteric effector of ASK1, modifying the structure of the TRX1-binding domain and changing its interaction with the tetratricopeptide repeats domain. Consequently, TRX1 reduces access to the activation segment of the kinase domain. Overall, our findings not only clarify the role of ASK1 dimerization and inter-domain contacts but also provide key mechanistic insights into its regulation, thereby highlighting the potential of ASK1 protein-protein interactions as targets for anti-inflammatory therapy.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Daniyal Tariq, Nicole Maurici ... Brian R Crane
    Research Article

    Circadian clocks are composed of transcription-translation negative feedback loops that pace rhythms of gene expression to the diurnal cycle. In the filamentous fungus Neurospora crassa, the proteins Frequency (FRQ), the FRQ-interacting RNA helicase (FRH), and Casein-Kinase I (CK1) form the FFC complex that represses expression of genes activated by the white-collar complex (WCC). FRQ orchestrates key molecular interactions of the clock despite containing little predicted tertiary structure. Spin labeling and pulse-dipolar electron spin resonance spectroscopy provide domain-specific structural insights into the 989-residue intrinsically disordered FRQ and the FFC. FRQ contains a compact core that associates and organizes FRH and CK1 to coordinate their roles in WCC repression. FRQ phosphorylation increases conformational flexibility and alters oligomeric state, but the changes in structure and dynamics are non-uniform. Full-length FRQ undergoes liquid–liquid phase separation (LLPS) to sequester FRH and CK1 and influence CK1 enzymatic activity. Although FRQ phosphorylation favors LLPS, LLPS feeds back to reduce FRQ phosphorylation by CK1 at higher temperatures. Live imaging of Neurospora hyphae reveals FRQ foci characteristic of condensates near the nuclear periphery. Analogous clock repressor proteins in higher organisms share little position-specific sequence identity with FRQ; yet, they contain amino acid compositions that promote LLPS. Hence, condensate formation may be a conserved feature of eukaryotic clocks.