Stage-dependent remodeling of projections to motor cortex in ALS mouse model revealed by a new variant retrograde-AAV9

  1. Barbara Commisso
  2. Lingjun Ding
  3. Karl Varadi
  4. Martin Gorges
  5. David Bayer
  6. Tobias M Boeckers
  7. Albert C Ludolph
  8. Jan Kassubek
  9. Oliver Mueller
  10. Francesco Roselli  Is a corresponding author
  1. University of Ulm, Germany
  2. University Hospital Heidelberg, Germany
  3. University of Kiel, Germany

Abstract

Amyotrophic Lateral Sclerosis (ALS) is characterized by the progressive degeneration of motoneurons in the primary motor cortex (pMO) and in spinal cord. However, the pathogenic process involves multiple subnetworks in the brain and functional MRI studies demonstrate an increase in functional connectivity in areas connected to pMO despite the ongoing neurodegeneration. The extent and the structural basis of the motor subnetwork remodelling in experimentally-tractable models remain unclear. We have developed a new retrograde AAV9 to quantitatively map the projections to pMO in the SOD1(G93A) ALS mouse model. We show an increase in the number of neurons projecting from somatosensory cortex to pMO at presymptomatic stages, followed by an increase in projections from thalamus, auditory cortex and contralateral MO (inputs from 20 other structures remains unchanged) as disease advances. The stage- and structure-dependent remodeling of projection to pMO in ALS may provide insights into the hyperconnectivity observed in ALS patients.

Data availability

All the murine data generated or analysed during this study are included in the manuscript and supporting files. The raw images are deposited on the Dataverse database (https://doi.org/10.7910/DVN/5VNSXE)

Article and author information

Author details

  1. Barbara Commisso

    Department of Neurology, University of Ulm, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Lingjun Ding

    Department of Neurology, University of Ulm, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Karl Varadi

    Department of Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Martin Gorges

    Department of Neurology, University of Ulm, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. David Bayer

    Department of Neurology, University of Ulm, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Tobias M Boeckers

    Department of Anatomy and Cell Biology, University of Ulm, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Albert C Ludolph

    Department of Neurology, University of Ulm, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Jan Kassubek

    Department of Neurology, University of Ulm, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Oliver Mueller

    Dept. of Internal Medicine III, University of Kiel, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Francesco Roselli

    Department of Neurology, University of Ulm, Ulm, Germany
    For correspondence
    francesco.roselli@uni-ulm.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9935-6899

Funding

Baustein program-Ulm University Medical Faculty

  • Francesco Roselli

Deutsche Forschungsgemeinschaft (GRK1789)

  • David Bayer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments have been approved by the Regierungpraesidium Tubingen under the licence no. 1312. All animals were handled according to the federal regulations on animal experimentations and under the supervision of the local veterinary office. Every effort was made to adhere to the 3R guidelines and to minimize suffering.

Human subjects: All subjects included in the human study provided written informed consent according to institutional guidelines; the consent includes the declaration of the understanding of the study design, the agreement to the participation to the study, to the publication of the results, and to the data protection and anonymization procedures (under the chaptes Einwilligungserklaerung"", ""Probandeninformation"", ""Darstellung der Experimente"", ""Datenschutzerklärung""). The study was approved by the Ethics Committee of Ulm University, Ulm, Germany (reference #19/12) and was performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Copyright

© 2018, Commisso et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,685
    views
  • 442
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Barbara Commisso
  2. Lingjun Ding
  3. Karl Varadi
  4. Martin Gorges
  5. David Bayer
  6. Tobias M Boeckers
  7. Albert C Ludolph
  8. Jan Kassubek
  9. Oliver Mueller
  10. Francesco Roselli
(2018)
Stage-dependent remodeling of projections to motor cortex in ALS mouse model revealed by a new variant retrograde-AAV9
eLife 7:e36892.
https://doi.org/10.7554/eLife.36892

Share this article

https://doi.org/10.7554/eLife.36892

Further reading

    1. Neuroscience
    Maren Klingelhöfer-Jens, Katharina Hutterer ... Tina B Lonsdorf
    Research Article

    Childhood adversity is a strong predictor of developing psychopathological conditions. Multiple theories on the mechanisms underlying this association have been suggested which, however, differ in the operationalization of ‘exposure.’ Altered (threat) learning mechanisms represent central mechanisms by which environmental inputs shape emotional and cognitive processes and ultimately behavior. 1402 healthy participants underwent a fear conditioning paradigm (acquisition training, generalization), while acquiring skin conductance responses (SCRs) and ratings (arousal, valence, and contingency). Childhood adversity was operationalized as (1) dichotomization, and following (2) the specificity model, (3) the cumulative risk model, and (4) the dimensional model. Individuals exposed to childhood adversity showed blunted physiological reactivity in SCRs, but not ratings, and reduced CS+/CS- discrimination during both phases, mainly driven by attenuated CS+ responding. The latter was evident across different operationalizations of ‘exposure’ following the different theories. None of the theories tested showed clear explanatory superiority. Notably, a remarkably different pattern of increased responding to the CS- is reported in the literature for anxiety patients, suggesting that individuals exposed to childhood adversity may represent a specific sub-sample. We highlight that theories linking childhood adversity to (vulnerability to) psychopathology need refinement.

    1. Genetics and Genomics
    2. Neuroscience
    Monique Marylin Alves de Almeida, Yves De Repentigny ... Rashmi Kothary
    Research Article

    Spinal muscular atrophy (SMA) is caused by mutations in the Survival Motor Neuron 1 (SMN1) gene. While traditionally viewed as a motor neuron disorder, there is involvement of various peripheral organs in SMA. Notably, fatty liver has been observed in SMA mouse models and SMA patients. Nevertheless, it remains unclear whether intrinsic depletion of SMN protein in the liver contributes to pathology in the peripheral or central nervous systems. To address this, we developed a mouse model with a liver-specific depletion of SMN by utilizing an Alb-Cre transgene together with one Smn2B allele and one Smn1 exon 7 allele flanked by loxP sites. Initially, we evaluated phenotypic changes in these mice at postnatal day 19 (P19), when the severe model of SMA, the Smn2B/- mice, exhibit many symptoms of the disease. The liver-specific SMN depletion does not induce motor neuron death, neuromuscular pathology or muscle atrophy, characteristics typically observed in the Smn2B/- mouse at P19. However, mild liver steatosis was observed, although no changes in liver function were detected. Notably, pancreatic alterations resembled that of Smn2B/-mice, with a decrease in insulin-producing β-cells and an increase in glucagon-producingα-cells, accompanied by a reduction in blood glucose and an increase in plasma glucagon and glucagon-like peptide (GLP-1). These changes were transient, as mice at P60 exhibited recovery of liver and pancreatic function. While the mosaic pattern of the Cre-mediated excision precludes definitive conclusions regarding the contribution of liver-specific SMN depletion to overall tissue pathology, our findings highlight an intricate connection between liver function and pancreatic abnormalities in SMA.