Mitotic progression, arrest, exit or death relies on centromere structural integrity, rather than de novo transcription

  1. Marco Novais-Cruz
  2. Maria Alba Abad
  3. Wilfred FJ van IJcken
  4. Niels Galjart
  5. A Arockia Jeyaprakash
  6. Helder Maiato  Is a corresponding author
  7. Cristina Ferrás  Is a corresponding author
  1. Universidade do Porto, Portugal
  2. University of Edinburgh, United Kingdom
  3. Erasmus Medical Center, Netherlands

Abstract

Recent studies have challenged the prevailing dogma that transcription is repressed during mitosis. Transcription was also proposed to sustain a robust spindle assembly checkpoint (SAC) response. Here we used live-cell imaging of human cells, RNA-seq and qPCR to investigate the requirement for de novo transcription during mitosis. Under conditions of persistently unattached kinetochores, transcription inhibition with actinomycin D, or treatment with other DNA-intercalating drugs, delocalized the chromosomal passenger complex (CPC) protein Aurora B from centromeres, compromising SAC signalling and cell fate. However, we were unable to detect significant changes in mitotic transcript levels. Moreover, inhibition of transcription independently of DNA intercalation had no effect on Aurora B centromeric localization, SAC response, mitotic progression, exit or death. Mechanistically, we show that DNA intercalating agents reduce the interaction of the CPC with nucleosomes. Thus, mitotic progression, arrest, exit or death is determined by centromere structural integrity, rather than de novo transcription.

Data availability

Processed RNA-seq have been deposited and can be consulted athttps://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-6661

The following data sets were generated

Article and author information

Author details

  1. Marco Novais-Cruz

    Chromosome Instability and Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  2. Maria Alba Abad

    Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Wilfred FJ van IJcken

    Centre for Biomics, Erasmus Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0421-8301
  4. Niels Galjart

    Department of Cell Biology, Erasmus Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. A Arockia Jeyaprakash

    Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Helder Maiato

    Chromosome Instability and Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
    For correspondence
    maiato@i3s.up.pt
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6200-9997
  7. Cristina Ferrás

    Chromosome Instability and Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
    For correspondence
    cristina.ferras@ibmc.up.pt
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1134-7387

Funding

FEDER-Fundo Europeu de desenvolvimento Regional funds through the COMPETE 2020 (Norte-01-0145-FEDER-000029)

  • Cristina Ferrás

FEDER-Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020 (Norte-07-0124-FEDER-000003)

  • Cristina Ferrás

Fundação para a Ciência e a Tecnologia (EXPL/IF/00765/2014/CP1241/CT0003)

  • Cristina Ferrás

Fundação para a Ciência e a Tecnologia (FCT Investigator grant IF/00765/2014)

  • Cristina Ferrás

Fundação para a Ciência e a Tecnologia (FCT PhD grant SFRH/BD/117063/2016)

  • Marco Novais-Cruz

European Research Council (CODECHECK)

  • Helder Maiato

FLAD Life Science

  • Helder Maiato

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Novais-Cruz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,926
    views
  • 649
    downloads

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.36898

Further reading

    1. Cell Biology
    2. Evolutionary Biology
    Paul Richard J Yulo, Nicolas Desprat ... Heather L Hendrickson
    Research Article

    Maintenance of rod-shape in bacterial cells depends on the actin-like protein MreB. Deletion of mreB from Pseudomonas fluorescens SBW25 results in viable spherical cells of variable volume and reduced fitness. Using a combination of time-resolved microscopy and biochemical assay of peptidoglycan synthesis, we show that reduced fitness is a consequence of perturbed cell size homeostasis that arises primarily from differential growth of daughter cells. A 1000-generation selection experiment resulted in rapid restoration of fitness with derived cells retaining spherical shape. Mutations in the peptidoglycan synthesis protein Pbp1A were identified as the main route for evolutionary rescue with genetic reconstructions demonstrating causality. Compensatory pbp1A mutations that targeted transpeptidase activity enhanced homogeneity of cell wall synthesis on lateral surfaces and restored cell size homeostasis. Mechanistic explanations require enhanced understanding of why deletion of mreB causes heterogeneity in cell wall synthesis. We conclude by presenting two testable hypotheses, one of which posits that heterogeneity stems from non-functional cell wall synthesis machinery, while the second posits that the machinery is functional, albeit stalled. Overall, our data provide support for the second hypothesis and draw attention to the importance of balance between transpeptidase and glycosyltransferase functions of peptidoglycan building enzymes for cell shape determination.

    1. Cell Biology
    2. Developmental Biology
    Pavan K Nayak, Arul Subramanian, Thomas F Schilling
    Research Article

    Mechanical forces play a critical role in tendon development and function, influencing cell behavior through mechanotransduction signaling pathways and subsequent extracellular matrix (ECM) remodeling. Here we investigate the molecular mechanisms by which tenocytes in developing zebrafish embryos respond to muscle contraction forces during the onset of swimming and cranial muscle activity. Using genome-wide bulk RNA sequencing of FAC-sorted tenocytes we identify novel tenocyte markers and genes involved in tendon mechanotransduction. Embryonic tendons show dramatic changes in expression of matrix remodeling associated 5b (mxra5b), matrilin1 (matn1), and the transcription factor kruppel-like factor 2a (klf2a), as muscles start to contract. Using embryos paralyzed either by loss of muscle contractility or neuromuscular stimulation we confirm that muscle contractile forces influence the spatial and temporal expression patterns of all three genes. Quantification of these gene expression changes across tenocytes at multiple tendon entheses and myotendinous junctions reveals that their responses depend on force intensity, duration and tissue stiffness. These force-dependent feedback mechanisms in tendons, particularly in the ECM, have important implications for improved treatments of tendon injuries and atrophy.