CYK-4 functions independently of its centralspindlin partner ZEN-4 to cellularize oocytes in germline syncytia

  1. Kian-Yong Lee
  2. Rebecca A Green
  3. Edgar Gutierrez
  4. J Sebastian Gomez-Cavazos
  5. Irina Kolotuev
  6. Shaohe Wang
  7. Arshad Desai
  8. Alex Groisman
  9. Karen Oegema  Is a corresponding author
  1. University of California, San Diego, United States
  2. University of Lausanne, Switzerland

Abstract

Throughout metazoans, germ cells undergo incomplete cytokinesis to form syncytia connected by intercellular bridges. Gamete formation ultimately requires bridge closure, yet how bridges are reactivated to close is not known. The most conserved bridge component is centralspindlin, a complex of the Rho family GTPase-activating protein (GAP) CYK-4/MgcRacGAP and the microtubule motor ZEN-4/kinesin-6. Here, we show that oocyte production by the syncytial C. elegans germline requires CYK-4 but not ZEN-4, which contrasts with cytokinesis, where both are essential. Longitudinal imaging after conditional inactivation revealed that CYK-4 activity is important for oocyte cellularization, but not for the cytokinesis-like events that generate syncytial compartments. CYK-4's lipid-binding C1 domain and the GTPase-binding interface of its GAP domain were both required to target CYK-4 to intercellular bridges and to cellularize oocytes. These results suggest that the conserved C1-GAP region of CYK-4 constitutes a targeting module required for closure of intercellular bridges in germline syncytia.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Kian-Yong Lee

    Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0946-1703
  2. Rebecca A Green

    Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Edgar Gutierrez

    Department of Physics, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. J Sebastian Gomez-Cavazos

    Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Irina Kolotuev

    EM Facility, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1433-8048
  6. Shaohe Wang

    Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Arshad Desai

    Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5410-1830
  8. Alex Groisman

    Department of Physics, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Karen Oegema

    Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, United States
    For correspondence
    koegema@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8515-7514

Funding

National Institutes of Health (T32 CA067754)

  • J Sebastian Gomez-Cavazos

National Science Foundation (PHY-14113130)

  • Alex Groisman

Ludwig Institute for Cancer Research

  • Arshad Desai
  • Karen Oegema

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,334
    views
  • 274
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kian-Yong Lee
  2. Rebecca A Green
  3. Edgar Gutierrez
  4. J Sebastian Gomez-Cavazos
  5. Irina Kolotuev
  6. Shaohe Wang
  7. Arshad Desai
  8. Alex Groisman
  9. Karen Oegema
(2018)
CYK-4 functions independently of its centralspindlin partner ZEN-4 to cellularize oocytes in germline syncytia
eLife 7:e36919.
https://doi.org/10.7554/eLife.36919

Share this article

https://doi.org/10.7554/eLife.36919