Cryo-EM structure of the polycystin 2-l1 ion channel

  1. Raymond E Hulse
  2. Zongli Li
  3. Rick K Huang
  4. Jin Zhang
  5. David E Clapham  Is a corresponding author
  1. Howard Hughes Medical Institute, United States
  2. Harvard Medical School, United States

Abstract

We report the near atomic resolution (3.3 Å) of the human polycystic kidney disease 2-like 1 (polycystin 2-l1) ion channel. Encoded by PKD2L1, polycystin 2-l1 is a calcium and monovalent cation-permeant ion channel in primary cilia and plasma membranes. The related primary cilium-specific polycystin-2 protein, encoded by PKD2, shares a high degree of sequence similarity, yet has distinct permeability characteristics. Here we show that these differences are reflected in the architecture of polycystin 2-l1.

Data availability

The cryo map and model have been deposited to the Worldwide Protein Data Bank (6DU8) and Electron Microscopy Data Bank (8912).

The following data sets were generated
    1. Clapham DE
    2. Hulse RE
    3. Li Z
    4. Huang RK
    5. Zhang J
    (2018) Cryo map and model from
    Publicly available at the Worldwide Protein Data Bank (Accession no: 6DU8).
    1. Clapham DE
    2. Hulse RE
    3. Li Z
    4. Huang RK
    5. Zhang J
    (2018) Cryo map and model from
    Publicly available at the Electron Microscopy Data Bank (Accession no: 8912).
The following previously published data sets were used

Article and author information

Author details

  1. Raymond E Hulse

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0110-3752
  2. Zongli Li

    Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Rick K Huang

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jin Zhang

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. David E Clapham

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    For correspondence
    claphamd@hhmi.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4459-9428

Funding

Howard Hughes Medical Institute

  • David E Clapham

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Hulse et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,890
    views
  • 607
    downloads
  • 45
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Raymond E Hulse
  2. Zongli Li
  3. Rick K Huang
  4. Jin Zhang
  5. David E Clapham
(2018)
Cryo-EM structure of the polycystin 2-l1 ion channel
eLife 7:e36931.
https://doi.org/10.7554/eLife.36931

Share this article

https://doi.org/10.7554/eLife.36931

Further reading

    1. Structural Biology and Molecular Biophysics
    Bradley P Clarke, Alexia E Angelos ... Yi Ren
    Research Article

    In eukaryotes, RNAs transcribed by RNA Pol II are modified at the 5′ end with a 7-methylguanosine (m7G) cap, which is recognized by the nuclear cap binding complex (CBC). The CBC plays multiple important roles in mRNA metabolism, including transcription, splicing, polyadenylation, and export. It promotes mRNA export through direct interaction with a key mRNA export factor, ALYREF, which in turn links the TRanscription and EXport (TREX) complex to the 5′ end of mRNA. However, the molecular mechanism for CBC-mediated recruitment of the mRNA export machinery is not well understood. Here, we present the first structure of the CBC in complex with an mRNA export factor, ALYREF. The cryo-EM structure of CBC-ALYREF reveals that the RRM domain of ALYREF makes direct contact with both the NCBP1 and NCBP2 subunits of the CBC. Comparing CBC-ALYREF with other cellular complexes containing CBC and/or ALYREF components provides insights into the coordinated events during mRNA transcription, splicing, and export.

    1. Structural Biology and Molecular Biophysics
    Yao Chi Chen, Karen Sargsyan ... Carmay Lim
    Research Article

    Experimental detection of residues critical for protein–protein interactions (PPI) is a time-consuming, costly, and labor-intensive process. Hence, high-throughput PPI-hot spot prediction methods have been developed, but they have been validated using relatively small datasets, which may compromise their predictive reliability. Here, we introduce PPI-hotspotID, a novel method for identifying PPI-hot spots using the free protein structure, and validated it on the largest collection of experimentally confirmed PPI-hot spots to date. We explored the possibility of detecting PPI-hot spots using (i) FTMap in the PPI mode, which identifies hot spots on protein–protein interfaces from the free protein structure, and (ii) the interface residues predicted by AlphaFold-Multimer. PPI-hotspotID yielded better performance than FTMap and SPOTONE, a webserver for predicting PPI-hot spots given the protein sequence. When combined with the AlphaFold-Multimer-predicted interface residues, PPI-hotspotID yielded better performance than either method alone. Furthermore, we experimentally verified several PPI-hotspotID-predicted PPI-hot spots of eukaryotic elongation factor 2. Notably, PPI-hotspotID can reveal PPI-hot spots not obvious from complex structures, including those in indirect contact with binding partners. PPI-hotspotID serves as a valuable tool for understanding PPI mechanisms and aiding drug design. It is available as a web server (https://ppihotspotid.limlab.dnsalias.org/) and open-source code (https://github.com/wrigjz/ppihotspotid/).