Cryo-EM structure of the polycystin 2-l1 ion channel

  1. Raymond E Hulse
  2. Zongli Li
  3. Rick K Huang
  4. Jin Zhang
  5. David E Clapham  Is a corresponding author
  1. Howard Hughes Medical Institute, United States
  2. Harvard Medical School, United States

Abstract

We report the near atomic resolution (3.3 Å) of the human polycystic kidney disease 2-like 1 (polycystin 2-l1) ion channel. Encoded by PKD2L1, polycystin 2-l1 is a calcium and monovalent cation-permeant ion channel in primary cilia and plasma membranes. The related primary cilium-specific polycystin-2 protein, encoded by PKD2, shares a high degree of sequence similarity, yet has distinct permeability characteristics. Here we show that these differences are reflected in the architecture of polycystin 2-l1.

Data availability

The cryo map and model have been deposited to the Worldwide Protein Data Bank (6DU8) and Electron Microscopy Data Bank (8912).

The following data sets were generated
    1. Clapham DE
    2. Hulse RE
    3. Li Z
    4. Huang RK
    5. Zhang J
    (2018) Cryo map and model from
    Publicly available at the Worldwide Protein Data Bank (Accession no: 6DU8).
    1. Clapham DE
    2. Hulse RE
    3. Li Z
    4. Huang RK
    5. Zhang J
    (2018) Cryo map and model from
    Publicly available at the Electron Microscopy Data Bank (Accession no: 8912).
The following previously published data sets were used

Article and author information

Author details

  1. Raymond E Hulse

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0110-3752
  2. Zongli Li

    Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Rick K Huang

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jin Zhang

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. David E Clapham

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    For correspondence
    claphamd@hhmi.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4459-9428

Funding

Howard Hughes Medical Institute

  • David E Clapham

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Hulse et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,901
    views
  • 610
    downloads
  • 47
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Raymond E Hulse
  2. Zongli Li
  3. Rick K Huang
  4. Jin Zhang
  5. David E Clapham
(2018)
Cryo-EM structure of the polycystin 2-l1 ion channel
eLife 7:e36931.
https://doi.org/10.7554/eLife.36931

Share this article

https://doi.org/10.7554/eLife.36931

Further reading

    1. Structural Biology and Molecular Biophysics
    Kate Huffer, Matthew CS Denley ... Kenton J Swartz
    Research Article

    Transient receptor potential (TRP) channels are a large and diverse family of tetrameric cation-selective channels that are activated by many different types of stimuli, including noxious heat or cold, organic ligands such as vanilloids or cooling agents, or intracellular Ca2+. Structures available for all subtypes of TRP channels reveal that the transmembrane domains are closely related despite their unique sensitivity to activating stimuli. Here, we use computational and electrophysiological approaches to explore the conservation of the cooling agent binding pocket identified within the S1–S4 domain of the Melastatin subfamily member TRPM8, the mammalian sensor of noxious cold, with other TRPM channel subtypes. We find that a subset of TRPM channels, including TRPM2, TRPM4, and TRPM5, contain pockets very similar to the cooling agent binding pocket in TRPM8. We then show how the cooling agent icilin modulates activation of mouse TRPM4 to intracellular Ca2+, enhancing the sensitivity of the channel to Ca2+ and diminishing outward-rectification to promote opening at negative voltages. Mutations known to promote or diminish activation of TRPM8 by cooling agents similarly alter activation of TRPM4 by icilin, suggesting that icilin binds to the cooling agent binding pocket to promote opening of the channel. These findings demonstrate that TRPM4 and TRPM8 channels share related ligand binding pockets that are allosterically coupled to opening of the pore.

    1. Structural Biology and Molecular Biophysics
    Alessia Golluscio, Jodene Eldstrom ... H Peter Larsson
    Research Article

    In cardiomyocytes, the KCNQ1/KCNE1 channel complex mediates the slow delayed-rectifier current (IKs), pivotal during the repolarization phase of the ventricular action potential. Mutations in IKs cause long QT syndrome (LQTS), a syndrome with a prolonged QT interval on the ECG, which increases the risk of ventricular arrhythmia and sudden cardiac death. One potential therapeutical intervention for LQTS is based on targeting IKs channels to restore channel function and/or the physiological QT interval. Polyunsaturated fatty acids (PUFAs) are potent activators of KCNQ1 channels and activate IKs channels by binding to two different sites, one in the voltage sensor domain – which shifts the voltage dependence to more negative voltages – and the other in the pore domain – which increases the maximal conductance of the channels (Gmax). However, the mechanism by which PUFAs increase the Gmax of the IKs channels is still poorly understood. In addition, it is unclear why IKs channels have a very small single-channel conductance and a low open probability or whether PUFAs affect any of these properties of IKs channels. Our results suggest that the selectivity filter in KCNQ1 is normally unstable, contributing to the low open probability, and that the PUFA-induced increase in Gmax is caused by a stabilization of the selectivity filter in an open-conductive state.