The ER membrane protein complex interacts cotranslationally to enable biogenesis of multipass membrane proteins
Abstract
The endoplasmic reticulum (ER) supports biosynthesis of proteins with diverse transmembrane domain (TMD) lengths and hydrophobicity. Features in transmembrane domains such as charged residues in ion channels are often functionally important, but could pose a challenge during cotranslational membrane insertion and folding. Our systematic proteomic approaches in both yeast and human cells revealed that the ER membrane protein complex (EMC) binds to and promotes the biogenesis of a range of multipass transmembrane proteins, with a particular enrichment for transporters. Proximity-specific ribosome profiling demonstrates that the EMC engages clients cotranslationally and immediately following clusters of TMDs enriched for charged residues. The EMC can remain associated after completion of translation, which both protects clients from premature degradation and allows recruitment of substrate-specific and general chaperones. Thus, the EMC broadly enables the biogenesis of multipass transmembrane proteins containing destabilizing features, thereby mitigating the trade-off between function and stability.
Data availability
Sequencing data have been deposited in GEO under accession code GSE112891.
-
The ER membrane protein complex interacts cotranslationally to enable biogenesis of multipass membrane proteinsPublicly available at the NCBI Gene Expression Omnibus (accession no: GSE112891).
-
The SND proteins constitute an alternative targeting route to the endoplasmic reticulumPublicly available at the NCBI Gene Expression Omnibus (accession no: GSE85686).
-
Principles of ER Co-Translational Translocation Revealed by Proximity-Specific Ribosome ProfilingPublicly available at the NCBI Gene Expression Omnibus (accession no: GSE61012).
Article and author information
Author details
Funding
Howard Hughes Medical Institute (Investigator Program)
- Jonathan S Weissman
Deutsche Forschungsgemeinschaft (Gottfried Wilhelm Leibniz Prize MA 1764/2-1)
- Georg HH Borner
European Research Council (ERC2012-SyG_318987-ToPAG)
- Daniel N Itzhak
Howard Hughes Medical Institute (Faculty Scholar Grant)
- Adam Frost
National Institutes of Health (AG041826)
- Jonathan S Weissman
National Institutes of Health (1DP2GM110772-01)
- Adam Frost
National Institutes of Health (8P41GM103481)
- Alma L Burlingame
National Institutes of Health (1S10OD16229)
- Alma L Burlingame
National Institutes of Health (GM075061)
- Jeffrey Brodsky
Helen Hay Whitney Foundation (Postdoctoral Fellowship)
- Matthew J Shurtleff
Jane Coffin Childs Memorial Fund for Medical Research (Postdoctoral Fellowship)
- Nicole T Schirle Oakdale
Sandler Foundation (Program for Breakthrough Biomedical Research)
- Adam Frost
American Asthma Foundation
- Adam Frost
Louis-Jeantet Foundation
- Daniel N Itzhak
Dr. Miriam and Sheldon G. Adelson Medical Research Foundation
- Alma L Burlingame
Max Planck Society for the Advancement of Science
- Daniel N Itzhak
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2018, Shurtleff et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 13,920
- views
-
- 1,772
- downloads
-
- 182
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
- Chromosomes and Gene Expression
During oncogene-induced senescence there are striking changes in the organisation of heterochromatin in the nucleus. This is accompanied by activation of a pro-inflammatory gene expression programme – the senescence-associated secretory phenotype (SASP) – driven by transcription factors such as NF-κB. The relationship between heterochromatin re-organisation and the SASP has been unclear. Here, we show that TPR, a protein of the nuclear pore complex basket required for heterochromatin re-organisation during senescence, is also required for the very early activation of NF-κB signalling during the stress-response phase of oncogene-induced senescence. This is prior to activation of the SASP and occurs without affecting NF-κB nuclear import. We show that TPR is required for the activation of innate immune signalling at these early stages of senescence and we link this to the formation of heterochromatin-enriched cytoplasmic chromatin fragments thought to bleb off from the nuclear periphery. We show that HMGA1 is also required for cytoplasmic chromatin fragment formation. Together these data suggest that re-organisation of heterochromatin is involved in altered structural integrity of the nuclear periphery during senescence, and that this can lead to activation of cytoplasmic nucleic acid sensing, NF-κB signalling, and activation of the SASP.
-
- Cell Biology
- Medicine
The IncRNA Malat1 was initially believed to be dispensable for physiology due to the lack of observable phenotypes in Malat1 knockout (KO) mice. However, our study challenges this conclusion. We found that both Malat1 KO and conditional KO mice in the osteoblast lineage exhibit significant osteoporosis. Mechanistically, Malat1 acts as an intrinsic regulator in osteoblasts to promote osteogenesis. Interestingly, Malat1 does not directly affect osteoclastogenesis but inhibits osteoclastogenesis in a non-autonomous manner in vivo via integrating crosstalk between multiple cell types, including osteoblasts, osteoclasts, and chondrocytes. Our findings substantiate the existence of a novel remodeling network in which Malat1 serves as a central regulator by binding to β-catenin and functioning through the β-catenin-OPG/Jagged1 pathway in osteoblasts and chondrocytes. In pathological conditions, Malat1 significantly promotes bone regeneration in fracture healing. Bone homeostasis and regeneration are crucial to well-being. Our discoveries establish a previous unrecognized paradigm model of Malat1 function in the skeletal system, providing novel mechanistic insights into how a lncRNA integrates cellular crosstalk and molecular networks to fine tune tissue homeostasis, remodeling and repair.