The ER membrane protein complex interacts cotranslationally to enable biogenesis of multipass membrane proteins

Abstract

The endoplasmic reticulum (ER) supports biosynthesis of proteins with diverse transmembrane domain (TMD) lengths and hydrophobicity. Features in transmembrane domains such as charged residues in ion channels are often functionally important, but could pose a challenge during cotranslational membrane insertion and folding. Our systematic proteomic approaches in both yeast and human cells revealed that the ER membrane protein complex (EMC) binds to and promotes the biogenesis of a range of multipass transmembrane proteins, with a particular enrichment for transporters. Proximity-specific ribosome profiling demonstrates that the EMC engages clients cotranslationally and immediately following clusters of TMDs enriched for charged residues. The EMC can remain associated after completion of translation, which both protects clients from premature degradation and allows recruitment of substrate-specific and general chaperones. Thus, the EMC broadly enables the biogenesis of multipass transmembrane proteins containing destabilizing features, thereby mitigating the trade-off between function and stability.

Data availability

Sequencing data have been deposited in GEO under accession code GSE112891.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Matthew J Shurtleff

    Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Daniel N Itzhak

    Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Jeffrey A Hussmann

    Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Nicole T Schirle Oakdale

    Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Elizabeth A Costa

    Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8365-0436
  6. Martin Jonikas

    Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jimena Weibezahn

    Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Katerina D Popova

    Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Calvin H Jan

    Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Pavel Sinitcyn

    Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2653-1702
  11. Shruthi S Vembar

    Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Hilda Hernandez

    Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Jürgen Cox

    Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  14. Alma L Burlingame

    Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Jeffrey Brodsky

    Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Adam Frost

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2231-2577
  17. Georg HH Borner

    Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
    For correspondence
    borner@biochem.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3166-3435
  18. Jonathan S Weissman

    Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
    For correspondence
    Jonathan.Weissman@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2445-670X

Funding

Howard Hughes Medical Institute (Investigator Program)

  • Jonathan S Weissman

Deutsche Forschungsgemeinschaft (Gottfried Wilhelm Leibniz Prize MA 1764/2-1)

  • Georg HH Borner

European Research Council (ERC2012-SyG_318987-ToPAG)

  • Daniel N Itzhak

Howard Hughes Medical Institute (Faculty Scholar Grant)

  • Adam Frost

National Institutes of Health (AG041826)

  • Jonathan S Weissman

National Institutes of Health (1DP2GM110772-01)

  • Adam Frost

National Institutes of Health (8P41GM103481)

  • Alma L Burlingame

National Institutes of Health (1S10OD16229)

  • Alma L Burlingame

National Institutes of Health (GM075061)

  • Jeffrey Brodsky

Helen Hay Whitney Foundation (Postdoctoral Fellowship)

  • Matthew J Shurtleff

Jane Coffin Childs Memorial Fund for Medical Research (Postdoctoral Fellowship)

  • Nicole T Schirle Oakdale

Sandler Foundation (Program for Breakthrough Biomedical Research)

  • Adam Frost

American Asthma Foundation

  • Adam Frost

Louis-Jeantet Foundation

  • Daniel N Itzhak

Dr. Miriam and Sheldon G. Adelson Medical Research Foundation

  • Alma L Burlingame

Max Planck Society for the Advancement of Science

  • Daniel N Itzhak

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. David Ron, University of Cambridge, United Kingdom

Publication history

  1. Received: March 27, 2018
  2. Accepted: May 26, 2018
  3. Accepted Manuscript published: May 29, 2018 (version 1)
  4. Version of Record published: June 11, 2018 (version 2)
  5. Version of Record updated: August 6, 2018 (version 3)

Copyright

© 2018, Shurtleff et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 11,612
    Page views
  • 1,536
    Downloads
  • 86
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew J Shurtleff
  2. Daniel N Itzhak
  3. Jeffrey A Hussmann
  4. Nicole T Schirle Oakdale
  5. Elizabeth A Costa
  6. Martin Jonikas
  7. Jimena Weibezahn
  8. Katerina D Popova
  9. Calvin H Jan
  10. Pavel Sinitcyn
  11. Shruthi S Vembar
  12. Hilda Hernandez
  13. Jürgen Cox
  14. Alma L Burlingame
  15. Jeffrey Brodsky
  16. Adam Frost
  17. Georg HH Borner
  18. Jonathan S Weissman
(2018)
The ER membrane protein complex interacts cotranslationally to enable biogenesis of multipass membrane proteins
eLife 7:e37018.
https://doi.org/10.7554/eLife.37018

Further reading

    1. Cell Biology
    Tai-De Li et al.
    Research Article

    Branched actin networks are self-assembling molecular motors that move biological membranes and drive many important cellular processes, including phagocytosis, endocytosis, and pseudopod protrusion. When confronted with opposing forces, the growth rate of these networks slows and their density increases, but the stoichiometry of key components does not change. The molecular mechanisms governing this force response are not well understood, so we used single-molecule imaging and AFM cantilever deflection to measure how applied forces affect each step in branched actin network assembly. Although load forces are observed to increase the density of growing filaments, we find that they actually decrease the rate of filament nucleation due to inhibitory interactions between actin filament ends and nucleation promoting factors. The force-induced increase in network density turns out to result from an exponential drop in the rate constant that governs filament capping. The force dependence of filament capping matches that of filament elongation and can be explained by expanding Brownian Ratchet theory to cover both processes. We tested a key prediction of this expanded theory by measuring the force-dependent activity of engineered capping protein variants and found that increasing the size of the capping protein increases its sensitivity to applied forces. In summary, we find that Brownian Ratchets underlie not only the ability of growing actin filaments to generate force but also the ability of branched actin networks to adapt their architecture to changing loads.

    1. Cell Biology
    2. Immunology and Inflammation
    Ekaterini Maria Lyras et al.
    Research Article

    The tongue is a unique muscular organ situated in the oral cavity where it is involved in taste sensation, mastication, and articulation. As a barrier organ, which is constantly exposed to environmental pathogens, the tongue is expected to host an immune cell network ensuring local immune defence. However, the composition and the transcriptional landscape of the tongue immune system are currently not completely defined. Here, we characterised the tissue-resident immune compartment of the murine tongue during development, health and disease, combining single-cell RNA-sequencing with in situ immunophenotyping. We identified distinct local immune cell populations and described two specific subsets of tongue-resident macrophages occupying discrete anatomical niches. Cx3cr1+ macrophages were located specifically in the highly innervated lamina propria beneath the tongue epidermis and at times in close proximity to fungiform papillae. Folr2+ macrophages were detected in deeper muscular tissue. In silico analysis indicated that the two macrophage subsets originate from a common proliferative precursor during early postnatal development and responded differently to systemic LPS in vivo. Our description of the under-investigated tongue immune system sets a starting point to facilitate research on tongue immune-physiology and pathology including cancer and taste disorders.