FBXL19 recruits CDK-Mediator to CpG islands of developmental genes priming them for activation during lineage commitment

  1. Emilia A Dimitrova
  2. Takashi Kondo
  3. Angelika Feldmann
  4. Manabu Nakayama
  5. Yoko Koseki
  6. Rebecca Konietzny
  7. Benedikt M Kessler
  8. Haruhiko Koseki
  9. Robert J Klose  Is a corresponding author
  1. University of Oxford, United Kingdom
  2. RIKEN Center for Integrative Medical Sciences, Japan
  3. Kazusa DNA Research Institute, Japan

Abstract

CpG islands are gene regulatory elements associated with the majority of mammalian promoters, yet how they regulate gene expression remains poorly understood. Here, we identify FBXL19 as a CpG island-binding protein in mouse embryonic stem (ES) cells and show that it associates with the CDK-Mediator complex. We discover that FBXL19 recruits CDK-Mediator to CpG island-associated promoters of non-transcribed developmental genes to prime these genes for activation during cell lineage commitment. We further show that recognition of CpG islands by FBXL19 is essential for mouse development. Together this reveals a new CpG island-centric mechanism for CDK-Mediator recruitment to developmental gene promoters in ES cells and a requirement for CDK-Mediator in priming these developmental genes for activation during cell lineage commitment.

Data availability

Sequencing data generated in this study have been deposited in GEO under accession code GSE98756

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Emilia A Dimitrova

    Department of Biochemistry, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Takashi Kondo

    Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Angelika Feldmann

    Department of Biochemistry, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Manabu Nakayama

    Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Yoko Koseki

    Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Rebecca Konietzny

    TDI Mass Spectrometry Laboratory, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Benedikt M Kessler

    TDI Mass Spectrometry Laboratory, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Haruhiko Koseki

    Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8424-5854
  9. Robert J Klose

    Department of Biochemistry, University of Oxford, Oxford, United Kingdom
    For correspondence
    rob.klose@bioch.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8726-7888

Funding

Wellcome (098024/Z/11/Z)

  • Robert J Klose

European Research Council (681440)

  • Robert J Klose

Lister Institute of Preventive Medicine

  • Robert J Klose

Japan Agency for Medical Research and Development

  • Haruhiko Koseki

Sir Henry Wellcome Postdoctoral Fellowship (110286/Z/15/Z)

  • Angelika Feldmann

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Joaquín M Espinosa, University of Colorado School of Medicine, United States

Version history

  1. Received: March 29, 2018
  2. Accepted: May 26, 2018
  3. Accepted Manuscript published: May 29, 2018 (version 1)
  4. Version of Record published: June 12, 2018 (version 2)

Copyright

© 2018, Dimitrova et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,724
    views
  • 437
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Emilia A Dimitrova
  2. Takashi Kondo
  3. Angelika Feldmann
  4. Manabu Nakayama
  5. Yoko Koseki
  6. Rebecca Konietzny
  7. Benedikt M Kessler
  8. Haruhiko Koseki
  9. Robert J Klose
(2018)
FBXL19 recruits CDK-Mediator to CpG islands of developmental genes priming them for activation during lineage commitment
eLife 7:e37084.
https://doi.org/10.7554/eLife.37084

Share this article

https://doi.org/10.7554/eLife.37084

Further reading

    1. Chromosomes and Gene Expression
    Allison Coté, Aoife O'Farrell ... Arjun Raj
    Research Article

    Splicing is the stepwise molecular process by which introns are removed from pre-mRNA and exons are joined together to form mature mRNA sequences. The ordering and spatial distribution of these steps remain controversial, with opposing models suggesting splicing occurs either during or after transcription. We used single-molecule RNA FISH, expansion microscopy, and live-cell imaging to reveal the spatiotemporal distribution of nascent transcripts in mammalian cells. At super-resolution levels, we found that pre-mRNA formed clouds around the transcription site. These clouds indicate the existence of a transcription-site-proximal zone through which RNA move more slowly than in the nucleoplasm. Full-length pre-mRNA undergo continuous splicing as they move through this zone following transcription, suggesting a model in which splicing can occur post-transcriptionally but still within the proximity of the transcription site, thus seeming co-transcriptional by most assays. These results may unify conflicting reports of co-transcriptional versus post-transcriptional splicing.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Maria L Adelus, Jiacheng Ding ... Casey E Romanoski
    Research Article

    Heterogeneity in endothelial cell (EC) sub-phenotypes is becoming increasingly appreciated in atherosclerosis progression. Still, studies quantifying EC heterogeneity across whole transcriptomes and epigenomes in both in vitro and in vivo models are lacking. Multiomic profiling concurrently measuring transcriptomes and accessible chromatin in the same single cells was performed on six distinct primary cultures of human aortic ECs (HAECs) exposed to activating environments characteristic of the atherosclerotic microenvironment in vitro. Meta-analysis of single-cell transcriptomes across 17 human ex vivo arterial specimens was performed and two computational approaches quantitatively evaluated the similarity in molecular profiles between heterogeneous in vitro and ex vivo cell profiles. HAEC cultures were reproducibly populated by four major clusters with distinct pathway enrichment profiles and modest heterogeneous responses: EC1-angiogenic, EC2-proliferative, EC3-activated/mesenchymal-like, and EC4-mesenchymal. Quantitative comparisons between in vitro and ex vivo transcriptomes confirmed EC1 and EC2 as most canonically EC-like, and EC4 as most mesenchymal with minimal effects elicited by siERG and IL1B. Lastly, accessible chromatin regions unique to EC2 and EC4 were most enriched for coronary artery disease (CAD)-associated single-nucleotide polymorphisms from Genome Wide Association Studies (GWAS), suggesting that these cell phenotypes harbor CAD-modulating mechanisms. Primary EC cultures contain markedly heterogeneous cell subtypes defined by their molecular profiles. Surprisingly, the perturbations used here only modestly shifted cells between subpopulations, suggesting relatively stable molecular phenotypes in culture. Identifying consistently heterogeneous EC subpopulations between in vitro and ex vivo models should pave the way for improving in vitro systems while enabling the mechanisms governing heterogeneous cell state decisions.