Blumenols as shoot markers for root symbiosis with arbuscular mycorrhizal fungi
Abstract
High-through-put (HTP) screening for functional arbuscular mycorrhizal fungi (AMF)-associations is challenging because roots must be excavated and colonization evaluated by transcript analysis or microscopy. Here we show that specific leaf-metabolites provide broadly applicable accurate proxies of these associations, suitable for HTP-screens. With a combination of untargeted and targeted metabolomics, we show that shoot accumulations of hydroxy- and carboxyblumenol C-glucosides mirror root AMF-colonization in Nicotiana attenuata plants. Genetic/pharmacologic manipulations indicate that these AMF-indicative foliar blumenols are synthesized and transported from roots to shoots. These blumenol-derived foliar markers, found in many di- and monocotyledonous crop and model plants (Solanum lycopersicum, Solanum tuberosum, Hordeum vulgare, Triticum aestivum, Medicago truncatula and Brachypodium distachyon), are not restricted to particular plant-AMF interactions, and are shown to be applicable for field-based QTL mapping of AMF-related genes.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all figures.
Article and author information
Author details
Funding
Max-Planck-Gesellschaft (Open-access funding)
- Ming Wang
- Martin Schäfer
- Dapeng Li
- Rayko Halitschke
- Chuanfu Dong
- Erica McGale
- Christian Paetz
- Yuanyuan Song
- Suhua Li
- Junfu Dong
- Sven Heiling
- Karin Groten
- Ian T Baldwin
ERC Advanced Grant (ClockworkGreen (293926))
- Ian T Baldwin
Elsa Neumann Grant
- Philipp Franken
European Innovation Partnership Agri (276033540220041)
- Philipp Franken
Ministry of Consumer Protection, Food and Agriculture of Germany
- Philipp Franken
- Michael Bitterlich
Ministry for Science, Research and Culture of the State of Brandenburg, Germany
- Philipp Franken
- Michael Bitterlich
Thuringian Ministry of Infrastructure and Agriculture
- Philipp Franken
- Michael Bitterlich
U.S. Department of Energy (# DESC0012460)
- Maria J Harrison
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2018, Wang et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 7,689
- views
-
- 1,440
- downloads
-
- 60
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Ecology
- Evolutionary Biology
Understanding the origins of novel, complex phenotypes is a major goal in evolutionary biology. Poison frogs of the family Dendrobatidae have evolved the novel ability to acquire alkaloids from their diet for chemical defense at least three times. However, taxon sampling for alkaloids has been biased towards colorful species, without similar attention paid to inconspicuous ones that are often assumed to be undefended. As a result, our understanding of how chemical defense evolved in this group is incomplete. Here, we provide new data showing that, in contrast to previous studies, species from each undefended poison frog clade have measurable yet low amounts of alkaloids. We confirm that undefended dendrobatids regularly consume mites and ants, which are known sources of alkaloids. Thus, our data suggest that diet is insufficient to explain the defended phenotype. Our data support the existence of a phenotypic intermediate between toxin consumption and sequestration — passive accumulation — that differs from sequestration in that it involves no derived forms of transport and storage mechanisms yet results in low levels of toxin accumulation. We discuss the concept of passive accumulation and its potential role in the origin of chemical defenses in poison frogs and other toxin-sequestering organisms. In light of ideas from pharmacokinetics, we incorporate new and old data from poison frogs into an evolutionary model that could help explain the origins of acquired chemical defenses in animals and provide insight into the molecular processes that govern the fate of ingested toxins.
-
- Ecology
Tracking wild pigs with GPS devices reveals how their social interactions could influence the spread of disease, offering new strategies for protecting agriculture, wildlife, and human health.