Learning recurrent dynamics in spiking networks

  1. Christopher M Kim  Is a corresponding author
  2. Carson C Chow  Is a corresponding author
  1. National Institutes of Health, United States

Abstract

Spiking activity of neurons engaged in learning and performing a task show complex spatiotemporal dynamics. While the output of recurrent network models can learn to perform various tasks, the possible range of recurrent dynamics that emerge after learning remains unknown. Here we show that modifying the recurrent connectivity with a recursive least squares algorithm provides sufficient flexibility for synaptic and spiking rate dynamics of spiking networks to produce a wide range of spatiotemporal activity. We apply the training method to learn arbitrary firing patterns, stabilize irregular spiking activity in a network of excitatory and inhibitory neurons respecting Dale's law, and reproduce the heterogeneous spiking rate patterns of cortical neurons engaged in motor planning and movement. We identify sufficient conditions for successful learning, characterize two types of learning errors, and assess the network capacity. Our findings show that synaptically-coupled recurrent spiking networks possess a vast computational capability that can support the diverse activity patterns in the brain.

Data availability

Example computer code that trains recurrent spiking networks is available at http://github.com/chrismkkim/SpikeLearning

Article and author information

Author details

  1. Christopher M Kim

    National Institute of Diabetes and Kidney and Digestive Diseases, National Institutes of Health, Bethesda, United States
    For correspondence
    chrismkkim@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1322-6207
  2. Carson C Chow

    National Institute of Diabetes and Kidney and Digestive Diseases, National Institutes of Health, Bethesda, United States
    For correspondence
    carsonc@niddk.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1463-9553

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (Intramural Research Program)

  • Christopher M Kim
  • Carson C Chow

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 3,786
    views
  • 662
    downloads
  • 42
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christopher M Kim
  2. Carson C Chow
(2018)
Learning recurrent dynamics in spiking networks
eLife 7:e37124.
https://doi.org/10.7554/eLife.37124

Share this article

https://doi.org/10.7554/eLife.37124