E proteins sharpen neurogenesis by modulating proneural bHLH transcription factors activity in an E-box-dependent manner

Abstract

Class II HLH proteins heterodimerize with class I HLH/E proteins to regulate transcription. Here we show that E proteins sharpen neurogenesis by adjusting the neurogenic strength of the distinct proneural proteins. We find that inhibiting BMP signaling or its target ID2 in the chick embryo spinal cord, impairs the neuronal production from progenitors expressing ATOH1/ASCL1, but less severely that from progenitors expressing NEUROG1/2/PTF1a. We show this context-dependent response to result from the differential modulation of proneural proteins' activity by E proteins. E proteins synergize with proneural proteins when acting on CAGSTG motifs, thereby facilitating the activity of ASCL1/ATOH1 which preferentially bind to such motifs. Conversely, E proteins restrict the neurogenic strength of NEUROG1/2 by directly inhibiting their preferential binding to CADATG motifs. Since we find this mechanism to be conserved in corticogenesis, we propose this differential co-operation of E proteins with proneural proteins as a novel though general feature of their mechanism of action.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Gwenvael Le Dréau

    Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Barcelona, Spain
    For correspondence
    gldbmc@ibmb.csic.es
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6877-3670
  2. René Escalona

    Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Raquel Fueyo

    Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona, CSIC, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7106-7163
  4. Antonio Herrera

    Department of Cell Biology, Instituto de Biología Molecular de Barcelona, CSIC, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Juan D Martínez

    Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  6. Susana Usieto

    Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Anghara Menendez

    Department of Cell Biology, Instituto de Biología Molecular de Barcelona, CSIC, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  8. Sebastian Pons

    Department of Cell Biology, Instituto de Biología Molecular de Barcelona, CSIC, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  9. Marian A Martinez-Balbas

    Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona, CSIC, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  10. Elisa Marti

    Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5839-7133

Funding

MINECO (BFU2016-81887-REDT)

  • Elisa Marti

MINECO (BFU2016-77498-P)

  • Elisa Marti

AECC (AIO2014)

  • Gwenvael Le Dréau

CONACYT

  • René Escalona

MECD (#FPU13/01384)

  • Raquel Fueyo

MINECO (#FJCI-2015-26175)

  • Antonio Herrera

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Le Dréau et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,227
    views
  • 361
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gwenvael Le Dréau
  2. René Escalona
  3. Raquel Fueyo
  4. Antonio Herrera
  5. Juan D Martínez
  6. Susana Usieto
  7. Anghara Menendez
  8. Sebastian Pons
  9. Marian A Martinez-Balbas
  10. Elisa Marti
(2018)
E proteins sharpen neurogenesis by modulating proneural bHLH transcription factors activity in an E-box-dependent manner
eLife 7:e37267.
https://doi.org/10.7554/eLife.37267

Share this article

https://doi.org/10.7554/eLife.37267

Further reading

    1. Cell Biology
    2. Developmental Biology
    Pavan K Nayak, Arul Subramanian, Thomas F Schilling
    Research Article

    Mechanical forces play a critical role in tendon development and function, influencing cell behavior through mechanotransduction signaling pathways and subsequent extracellular matrix (ECM) remodeling. Here we investigate the molecular mechanisms by which tenocytes in developing zebrafish embryos respond to muscle contraction forces during the onset of swimming and cranial muscle activity. Using genome-wide bulk RNA sequencing of FAC-sorted tenocytes we identify novel tenocyte markers and genes involved in tendon mechanotransduction. Embryonic tendons show dramatic changes in expression of matrix remodeling associated 5b (mxra5b), matrilin1 (matn1), and the transcription factor kruppel-like factor 2a (klf2a), as muscles start to contract. Using embryos paralyzed either by loss of muscle contractility or neuromuscular stimulation we confirm that muscle contractile forces influence the spatial and temporal expression patterns of all three genes. Quantification of these gene expression changes across tenocytes at multiple tendon entheses and myotendinous junctions reveals that their responses depend on force intensity, duration and tissue stiffness. These force-dependent feedback mechanisms in tendons, particularly in the ECM, have important implications for improved treatments of tendon injuries and atrophy.

    1. Developmental Biology
    2. Genetics and Genomics
    Menglei Yang, Hafiz Muhammad Jafar Hussain ... Baolu Shi
    Research Article

    Asthenoteratozoospermia, a prevalent cause of male infertility, lacks a well-defined etiology. DNAH12 is a special dynein featured by the absence of a microtubule-binding domain, however, its functions in spermatogenesis remain largely unknown. Through comprehensive genetic analyses involving whole-exome sequencing and subsequent Sanger sequencing on infertile patients and fertile controls from six distinct families, we unveiled six biallelic mutations in DNAH12 that co-segregate recessively with male infertility in the studied families. Transmission electron microscopy (TEM) revealed pronounced axonemal abnormalities, including inner dynein arms (IDAs) impairment and central pair (CP) loss in sperm flagella of the patients. Mouse models (Dnah12-/- and Dnah12mut/mut) were generated and recapitulated the reproductive defects in the patients. Noteworthy, DNAH12 deficiency did not show effects on cilium organization and function. Mechanistically, DNAH12 was confirmed to interact with two other IDA components DNALI1 and DNAH1, while disruption of DNAH12 leads to failed recruitment of DNALI1 and DNAH1 to IDAs and compromised sperm development. Furthermore, DNAH12 also interacts with radial spoke head proteins RSPH1, RSPH9, and DNAJB13 to regulate CP stability. Moreover, the infertility of Dnah12-/- mice could be overcome by intracytoplasmic sperm injection (ICSI) treatment. Collectively, DNAH12 plays a crucial role in the proper organization of axoneme in sperm flagella, but not cilia, by recruiting DNAH1 and DNALI1 in both humans and mice. These findings expand our comprehension of dynein component assembly in flagella and cilia and provide a valuable marker for genetic counseling and diagnosis of asthenoteratozoospermia in clinical practice.