E proteins sharpen neurogenesis by modulating proneural bHLH transcription factors activity in an E-box-dependent manner

Abstract

Class II HLH proteins heterodimerize with class I HLH/E proteins to regulate transcription. Here we show that E proteins sharpen neurogenesis by adjusting the neurogenic strength of the distinct proneural proteins. We find that inhibiting BMP signaling or its target ID2 in the chick embryo spinal cord, impairs the neuronal production from progenitors expressing ATOH1/ASCL1, but less severely that from progenitors expressing NEUROG1/2/PTF1a. We show this context-dependent response to result from the differential modulation of proneural proteins' activity by E proteins. E proteins synergize with proneural proteins when acting on CAGSTG motifs, thereby facilitating the activity of ASCL1/ATOH1 which preferentially bind to such motifs. Conversely, E proteins restrict the neurogenic strength of NEUROG1/2 by directly inhibiting their preferential binding to CADATG motifs. Since we find this mechanism to be conserved in corticogenesis, we propose this differential co-operation of E proteins with proneural proteins as a novel though general feature of their mechanism of action.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Gwenvael Le Dréau

    Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Barcelona, Spain
    For correspondence
    gldbmc@ibmb.csic.es
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6877-3670
  2. René Escalona

    Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Raquel Fueyo

    Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona, CSIC, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7106-7163
  4. Antonio Herrera

    Department of Cell Biology, Instituto de Biología Molecular de Barcelona, CSIC, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Juan D Martínez

    Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  6. Susana Usieto

    Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Anghara Menendez

    Department of Cell Biology, Instituto de Biología Molecular de Barcelona, CSIC, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  8. Sebastian Pons

    Department of Cell Biology, Instituto de Biología Molecular de Barcelona, CSIC, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  9. Marian A Martinez-Balbas

    Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona, CSIC, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  10. Elisa Marti

    Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5839-7133

Funding

MINECO (BFU2016-81887-REDT)

  • Elisa Marti

MINECO (BFU2016-77498-P)

  • Elisa Marti

AECC (AIO2014)

  • Gwenvael Le Dréau

CONACYT

  • René Escalona

MECD (#FPU13/01384)

  • Raquel Fueyo

MINECO (#FJCI-2015-26175)

  • Antonio Herrera

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Le Dréau et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,186
    views
  • 358
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gwenvael Le Dréau
  2. René Escalona
  3. Raquel Fueyo
  4. Antonio Herrera
  5. Juan D Martínez
  6. Susana Usieto
  7. Anghara Menendez
  8. Sebastian Pons
  9. Marian A Martinez-Balbas
  10. Elisa Marti
(2018)
E proteins sharpen neurogenesis by modulating proneural bHLH transcription factors activity in an E-box-dependent manner
eLife 7:e37267.
https://doi.org/10.7554/eLife.37267

Share this article

https://doi.org/10.7554/eLife.37267

Further reading

    1. Cell Biology
    2. Developmental Biology
    Yi Sun, Zhe Chen ... Chengtian Zhao
    Short Report

    How cells regulate the size of their organelles remains a fundamental question in cell biology. Cilia, with their simple structure and surface localization, provide an ideal model for investigating organelle size control. However, most studies on cilia length regulation are primarily performed on several single-celled organisms. In contrast, the mechanism of length regulation in cilia across diverse cell types within multicellular organisms remains a mystery. Similar to humans, zebrafish contain diverse types of cilia with variable lengths. Taking advantage of the transparency of zebrafish embryos, we conducted a comprehensive investigation into intraflagellar transport (IFT), an essential process for ciliogenesis. By generating a transgenic line carrying Ift88-GFP transgene, we observed IFT in multiple types of cilia with varying lengths. Remarkably, cilia exhibited variable IFT speeds in different cell types, with longer cilia exhibiting faster IFT speeds. This increased IFT speed in longer cilia is likely not due to changes in common factors that regulate IFT, such as motor selection, BBSome proteins, or tubulin modification. Interestingly, longer cilia in the ear cristae tend to form larger IFT compared to shorter spinal cord cilia. Reducing the size of IFT particles by knocking down Ift88 slowed IFT speed and resulted in the formation of shorter cilia. Our study proposes an intriguing model of cilia length regulation via controlling IFT speed through the modulation of the size of the IFT complex. This discovery may provide further insights into our understanding of how organelle size is regulated in higher vertebrates.

    1. Developmental Biology
    2. Genetics and Genomics
    Subhradip Das, Sushmitha Hegde ... Girish S Ratnaparkhi
    Research Article

    Repurposing of pleiotropic factors during execution of diverse cellular processes has emerged as a regulatory paradigm. Embryonic development in metazoans is controlled by maternal factors deposited in the egg during oogenesis. Here, we explore maternal role(s) of Caspar (Casp), the Drosophila orthologue of human Fas-associated factor-1 (FAF1) originally implicated in host-defense as a negative regulator of NF-κB signaling. Maternal loss of either Casp or it’s protein partner, transitional endoplasmic reticulum 94 (TER94) leads to partial embryonic lethality correlated with aberrant centrosome behavior, cytoskeletal abnormalities, and defective gastrulation. Although ubiquitously distributed, both proteins are enriched in the primordial germ cells (PGCs), and in keeping with the centrosome problems, mutant embryos display a significant reduction in the PGC count. Moreover, the total number of pole buds is directly proportional to the level of Casp. Consistently, it’s ‘loss’ and ‘gain’ results in respective reduction and increase in the Oskar protein levels, the master determinant of PGC fate. To elucidate this regulatory loop, we analyzed several known components of mid-blastula transition and identify the translational repressor Smaug, a zygotic regulator of germ cell specification, as a potential critical target. We present a detailed structure-function analysis of Casp aimed at understanding its novel involvement during PGC development.