SRSF3 promotes pluripotency through Nanog mRNA export and coordination of the pluripotency gene expression program

Abstract

The establishment and maintenance of pluripotency depend on precise coordination of gene expression. We establish serine-arginine rich splicing factor 3 (SRSF3) as an essential regulator of RNAs encoding key components of the mouse pluripotency circuitry, SRSF3 ablation resulting in the loss of pluripotency and its overexpression enhancing reprogramming. Strikingly, SRSF3 binds to the core pluripotency transcription factor Nanog mRNA to facilitate its nucleo-cytoplasmic export independent of splicing. In the absence of SRSF3 binding, Nanog mRNA is sequestered in the nucleus and protein levels are severely downregulated. Moreover, SRSF3 controls the alternative splicing of the export factor Nxf1 and RNA regulators with established roles in pluripotency, and the steady-state levels of mRNAs encoding chromatin modifiers. Our investigation links molecular events to cellular functions by demonstrating how SRSF3 regulates the pluripotency genes and uncovers SRSF3-RNA interactions as a critical means to coordinate gene expression during reprogramming, stem cell self-renewal and early development.

Data availability

Sequencing data sets have been deposited in GEO under accession codes GSE101905 and GSE113794. The iCLIP data has been made available in the public version of iCount (http://icount.biolab.si; search for SRSF3).

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Madara Ratnadiwakara

    Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7252-1823
  2. Stuart K Archer

    Bioinformatics Platform, Monash University, Clayton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Craig I Dent

    School of Biological Sciences, Monash University, Clayton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Igor Ruiz de los Mozos

    The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4097-6422
  5. Traude H Beilharz

    Biomedicine Discovery Institute, Monash University, Clayton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Anja S Knaupp

    Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Christian M Nefzger

    Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Jose M Polo

    Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  9. Minna-Liisa Anko

    Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
    For correspondence
    minni.anko@monash.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0446-3566

Funding

National Health and Medical Research Council (GNT1043092)

  • Traude H Beilharz
  • Anja S Knaupp
  • Minna-Liisa Anko

Australian Research Council

  • Jose M Polo

Aatos and Jane Erkko Foundation

  • Minna-Liisa Anko

Sylvia and Charles Viertel Charitable Foundation

  • Jose M Polo

National Health and Medical Research Council (GNT1042851)

  • Traude H Beilharz
  • Anja S Knaupp
  • Minna-Liisa Anko

National Health and Medical Research Council (GNT1092280)

  • Traude H Beilharz
  • Anja S Knaupp
  • Minna-Liisa Anko

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal work was performed in strict accordance with the Australian code for thecare and use of animals for scientific purposes (NHMRC) and the protocols were approved by the Monash University Animal Ethics Committee(MARP-2014-004).

Copyright

© 2018, Ratnadiwakara et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,998
    views
  • 506
    downloads
  • 44
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Madara Ratnadiwakara
  2. Stuart K Archer
  3. Craig I Dent
  4. Igor Ruiz de los Mozos
  5. Traude H Beilharz
  6. Anja S Knaupp
  7. Christian M Nefzger
  8. Jose M Polo
  9. Minna-Liisa Anko
(2018)
SRSF3 promotes pluripotency through Nanog mRNA export and coordination of the pluripotency gene expression program
eLife 7:e37419.
https://doi.org/10.7554/eLife.37419

Share this article

https://doi.org/10.7554/eLife.37419

Further reading

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Ashley L Cook, Surojit Sur ... Nicolas Wyhs
    Research Article

    Despite exciting developments in cancer immunotherapy, its broad application is limited by the paucity of targetable antigens on the tumor cell surface. As an intrinsic cellular pathway, nonsense-mediated decay (NMD) conceals neoantigens through the destruction of the RNA products from genes harboring truncating mutations. We developed and conducted a high-throughput screen, based on the ratiometric analysis of transcripts, to identify critical mediators of NMD in human cells. This screen implicated disruption of kinase SMG1’s phosphorylation of UPF1 as a potential disruptor of NMD. This led us to design a novel SMG1 inhibitor, KVS0001, that elevates the expression of transcripts and proteins resulting from human and murine truncating mutations in vitro and murine cells in vivo. Most importantly, KVS0001 concomitantly increased the presentation of immune-targetable human leukocyte antigens (HLA) class I-associated peptides from NMD-downregulated proteins on the surface of human cancer cells. KVS0001 provides new opportunities for studying NMD and the diseases in which NMD plays a role, including cancer and inherited diseases.

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Kira A Cozzolino, Lynn Sanford ... Dylan J Taatjes
    Research Article

    Hyperactive interferon (IFN) signaling is a hallmark of Down syndrome (DS), a condition caused by Trisomy 21 (T21); strategies that normalize IFN signaling could benefit this population. Mediator-associated kinases CDK8 and CDK19 drive inflammatory responses through incompletely understood mechanisms. Using sibling-matched cell lines with/without T21, we investigated Mediator kinase function in the context of hyperactive IFN in DS over a 75 min to 24 hr timeframe. Activation of IFN-response genes was suppressed in cells treated with the CDK8/CDK19 inhibitor cortistatin A (CA), via rapid suppression of IFN-responsive transcription factor (TF) activity. We also discovered that CDK8/CDK19 affect splicing, a novel means by which Mediator kinases control gene expression. To further probe Mediator kinase function, we completed cytokine screens and metabolomics experiments. Cytokines are master regulators of inflammatory responses; by screening 105 different cytokine proteins, we show that Mediator kinases help drive IFN-dependent cytokine responses at least in part through transcriptional regulation of cytokine genes and receptors. Metabolomics revealed that Mediator kinase inhibition altered core metabolic pathways in cell type-specific ways, and broad upregulation of anti-inflammatory lipid mediators occurred specifically in kinase-inhibited cells during hyperactive IFNγ signaling. A subset of these lipids (e.g. oleamide, desmosterol) serve as ligands for nuclear receptors PPAR and LXR, and activation of these receptors occurred specifically during hyperactive IFN signaling in CA-treated cells, revealing mechanistic links between Mediator kinases, lipid metabolism, and nuclear receptor function. Collectively, our results establish CDK8/CDK19 as context-specific metabolic regulators, and reveal that these kinases control gene expression not only via TFs, but also through metabolic changes and splicing. Moreover, we establish that Mediator kinase inhibition antagonizes IFN signaling through transcriptional, metabolic, and cytokine responses, with implications for DS and other chronic inflammatory conditions.