An intrinsic cell cycle timer terminates limb bud outgrowth

  1. Joseph Pickering
  2. Constance A Rich
  3. Holly Stainton
  4. Cristina Aceituno
  5. Kavitha Chinnaiya
  6. Patricia Saiz-Lopez
  7. Marian A Ros
  8. Matthew Towers  Is a corresponding author
  1. University of Sheffield, United Kingdom
  2. Instituto de Biomedicina y Biotecnología de Cantabria, Spain

Abstract

The longstanding view of how proliferative outgrowth terminates following the patterning phase of limb development involves the breakdown of reciprocal extrinsic signalling between the distal mesenchyme and the overlying epithelium (e-m signalling). However, by grafting distal mesenchyme cells from late stage chick wing buds to the epithelial environment of younger wing buds, we show that this mechanism is not required. RNA sequencing reveals that distal mesenchyme cells complete proliferative outgrowth by an intrinsic cell cycle timer in the presence of e-m signalling. In this process, e-m signalling is required permissively to allow the intrinsic cell cycle timer to run its course. We provide evidence that a temporal switch from BMP antagonism to BMP signalling controls the intrinsic cell cycle timer during limb outgrowth. Our findings have general implications for other patterning systems in which extrinsic signals and intrinsic timers are integrated.

Data availability

RNA sequencing data has been deposited (https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-6437/)

The following data sets were generated

Article and author information

Author details

  1. Joseph Pickering

    Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5892-5159
  2. Constance A Rich

    Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Holly Stainton

    Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Cristina Aceituno

    Instituto de Biomedicina y Biotecnología de Cantabria, Santander, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Kavitha Chinnaiya

    Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3375-420X
  6. Patricia Saiz-Lopez

    Instituto de Biomedicina y Biotecnología de Cantabria, Santander, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7106-5192
  7. Marian A Ros

    Instituto de Biomedicina y Biotecnología de Cantabria, Santander, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1224-7671
  8. Matthew Towers

    Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
    For correspondence
    m.towers@sheffield.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2189-4536

Funding

Wellcome Trust (202756/Z/16/Z)

  • Joseph Pickering
  • Constance A Rich
  • Holly Stainton
  • Kavitha Chinnaiya
  • Matthew Towers

Spanish Ministerio de Economia (BFU2017-88265- P)

  • Cristina Aceituno
  • Patricia Saiz-Lopez
  • Marian A Ros

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Pickering et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,586
    views
  • 313
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joseph Pickering
  2. Constance A Rich
  3. Holly Stainton
  4. Cristina Aceituno
  5. Kavitha Chinnaiya
  6. Patricia Saiz-Lopez
  7. Marian A Ros
  8. Matthew Towers
(2018)
An intrinsic cell cycle timer terminates limb bud outgrowth
eLife 7:e37429.
https://doi.org/10.7554/eLife.37429

Share this article

https://doi.org/10.7554/eLife.37429

Further reading

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    Valentin Babosha, Natalia Klimenko ... Oksana Maksimenko
    Research Article

    The male-specific lethal complex (MSL), which consists of five proteins and two non-coding roX RNAs, is involved in the transcriptional enhancement of X-linked genes to compensate for the sex chromosome monosomy in Drosophila XY males compared with XX females. The MSL1 and MSL2 proteins form the heterotetrameric core of the MSL complex and are critical for the specific recruitment of the complex to the high-affinity ‘entry’ sites (HAS) on the X chromosome. In this study, we demonstrated that the N-terminal region of MSL1 is critical for stability and functions of MSL1. Amino acid deletions and substitutions in the N-terminal region of MSL1 strongly affect both the interaction with roX2 RNA and the MSL complex binding to HAS on the X chromosome. In particular, substitution of the conserved N-terminal amino-acids 3–7 in MSL1 (MSL1GS) affects male viability similar to the inactivation of genes encoding roX RNAs. In addition, MSL1GS binds to promoters such as MSL1WT but does not co-bind with MSL2 and MSL3 to X chromosomal HAS. However, overexpression of MSL2 partially restores the dosage compensation. Thus, the interaction of MSL1 with roX RNA is critical for the efficient assembly of the MSL complex on HAS of the male X chromosome.

    1. Computational and Systems Biology
    2. Developmental Biology
    Rosalío Reyes, Arthur D Lander, Marcos Nahmad
    Research Article Updated

    Understanding the principles underlying the design of robust, yet flexible patterning systems is a key problem in developmental biology. In the Drosophila wing, Hedgehog (Hh) signaling determines patterning outputs using dynamical properties of the Hh gradient. In particular, the pattern of collier (col) is established by the steady-state Hh gradient, whereas the pattern of decapentaplegic (dpp), is established by a transient gradient of Hh known as the Hh overshoot. Here, we use mathematical modeling to suggest that this dynamical interpretation of the Hh gradient results in specific robustness and precision properties. For instance, the location of the anterior border of col, which is subject to self-enhanced ligand degradation is more robustly specified than that of dpp to changes in morphogen dosage, and we provide experimental evidence of this prediction. However, the anterior border of dpp expression pattern, which is established by the overshoot gradient is much more precise to what would be expected by the steady-state gradient. Therefore, the dynamical interpretation of Hh signaling offers tradeoffs between robustness and precision to establish tunable patterning properties in a target-specific manner.