Cerebellar implementation of movement sequences through feedback

  1. Andrei Khilkevich  Is a corresponding author
  2. Juan Zambrano
  3. Molly-Marie Richards
  4. Michael Dean Mauk
  1. University of Texas at Austin, United States

Abstract

Most movements are not unitary, but are comprised of sequences. Although patients with cerebellar pathology display severe deficits in the execution and learning of sequences1,2, most of our understanding of cerebellar mechanisms has come from analyses of single component movements. Eyelid conditioning is a cerebellar-mediated behavior that provides the ability to control and restrict inputs to the cerebellum through stimulation of mossy fibers. We utilized this advantage to test directly how the cerebellum can learn a sequence of inter-connected movement components in rabbits. We show that the feedback signals from one component are sufficient to serve as a cue for the next component in the sequence. In vivo recordings from Purkinje cells demonstrated that all components of the sequence were encoded similarly by cerebellar cortex. These results provide a simple yet general framework for how the cerebellum can use simple associate learning processes to chain together a sequence of appropriately timed responses.

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Figures. Source data is provided for Figures 2-8.

Article and author information

Author details

  1. Andrei Khilkevich

    Center for Learning and Memory, University of Texas at Austin, Austin, United States
    For correspondence
    khilkevich@utexas.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1876-4928
  2. Juan Zambrano

    Center for Learning and Memory, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Molly-Marie Richards

    Center for Learning and Memory, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Michael Dean Mauk

    Center for Learning and Memory, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute of Mental Health (MH 46904)

  • Michael Dean Mauk

National Institute of Neurological Disorders and Stroke (NS 98308)

  • Michael Dean Mauk

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Indira M Raman, Northwestern University, United States

Ethics

Animal experimentation: Treatment of animals and surgical procedures were in accordance with National Institutes of Health guidelines and an institutional animal care and use committee (IACUC) protocol (#AUP-2015-00137) of the University of Texas at Austin. Every effort was made to minimize suffering.

Version history

  1. Received: April 11, 2018
  2. Accepted: July 28, 2018
  3. Accepted Manuscript published: July 31, 2018 (version 1)
  4. Version of Record published: August 23, 2018 (version 2)
  5. Version of Record updated: August 24, 2018 (version 3)

Copyright

© 2018, Khilkevich et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,879
    views
  • 432
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrei Khilkevich
  2. Juan Zambrano
  3. Molly-Marie Richards
  4. Michael Dean Mauk
(2018)
Cerebellar implementation of movement sequences through feedback
eLife 7:e37443.
https://doi.org/10.7554/eLife.37443

Share this article

https://doi.org/10.7554/eLife.37443

Further reading

    1. Cell Biology
    2. Neuroscience
    Marcos Moreno-Aguilera, Alba M Neher ... Carme Gallego
    Research Article Updated

    Alternative RNA splicing is an essential and dynamic process in neuronal differentiation and synapse maturation, and dysregulation of this process has been associated with neurodegenerative diseases. Recent studies have revealed the importance of RNA-binding proteins in the regulation of neuronal splicing programs. However, the molecular mechanisms involved in the control of these splicing regulators are still unclear. Here, we show that KIS, a kinase upregulated in the developmental brain, imposes a genome-wide alteration in exon usage during neuronal differentiation in mice. KIS contains a protein-recognition domain common to spliceosomal components and phosphorylates PTBP2, counteracting the role of this splicing factor in exon exclusion. At the molecular level, phosphorylation of unstructured domains within PTBP2 causes its dissociation from two co-regulators, Matrin3 and hnRNPM, and hinders the RNA-binding capability of the complex. Furthermore, KIS and PTBP2 display strong and opposing functional interactions in synaptic spine emergence and maturation. Taken together, our data uncover a post-translational control of splicing regulators that link transcriptional and alternative exon usage programs in neuronal development.

    1. Genetics and Genomics
    2. Neuroscience
    Kenneth Chiou, Noah Snyder-Mackler
    Insight

    Single-cell RNA sequencing reveals the extent to which marmosets carry genetically distinct cells from their siblings.