Cerebellar implementation of movement sequences through feedback

  1. Andrei Khilkevich  Is a corresponding author
  2. Juan Zambrano
  3. Molly-Marie Richards
  4. Michael Dean Mauk
  1. University of Texas at Austin, United States

Abstract

Most movements are not unitary, but are comprised of sequences. Although patients with cerebellar pathology display severe deficits in the execution and learning of sequences1,2, most of our understanding of cerebellar mechanisms has come from analyses of single component movements. Eyelid conditioning is a cerebellar-mediated behavior that provides the ability to control and restrict inputs to the cerebellum through stimulation of mossy fibers. We utilized this advantage to test directly how the cerebellum can learn a sequence of inter-connected movement components in rabbits. We show that the feedback signals from one component are sufficient to serve as a cue for the next component in the sequence. In vivo recordings from Purkinje cells demonstrated that all components of the sequence were encoded similarly by cerebellar cortex. These results provide a simple yet general framework for how the cerebellum can use simple associate learning processes to chain together a sequence of appropriately timed responses.

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Figures. Source data is provided for Figures 2-8.

Article and author information

Author details

  1. Andrei Khilkevich

    Center for Learning and Memory, University of Texas at Austin, Austin, United States
    For correspondence
    khilkevich@utexas.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1876-4928
  2. Juan Zambrano

    Center for Learning and Memory, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Molly-Marie Richards

    Center for Learning and Memory, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Michael Dean Mauk

    Center for Learning and Memory, University of Texas at Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute of Mental Health (MH 46904)

  • Michael Dean Mauk

National Institute of Neurological Disorders and Stroke (NS 98308)

  • Michael Dean Mauk

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Indira M Raman, Northwestern University, United States

Ethics

Animal experimentation: Treatment of animals and surgical procedures were in accordance with National Institutes of Health guidelines and an institutional animal care and use committee (IACUC) protocol (#AUP-2015-00137) of the University of Texas at Austin. Every effort was made to minimize suffering.

Version history

  1. Received: April 11, 2018
  2. Accepted: July 28, 2018
  3. Accepted Manuscript published: July 31, 2018 (version 1)
  4. Version of Record published: August 23, 2018 (version 2)
  5. Version of Record updated: August 24, 2018 (version 3)

Copyright

© 2018, Khilkevich et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,897
    views
  • 436
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrei Khilkevich
  2. Juan Zambrano
  3. Molly-Marie Richards
  4. Michael Dean Mauk
(2018)
Cerebellar implementation of movement sequences through feedback
eLife 7:e37443.
https://doi.org/10.7554/eLife.37443

Share this article

https://doi.org/10.7554/eLife.37443

Further reading

    1. Developmental Biology
    2. Neuroscience
    Melody C Iacino, Taylor A Stowe ... Mark J Ferris
    Research Article Updated

    Adolescence is characterized by changes in reward-related behaviors, social behaviors, and decision-making. These behavioral changes are necessary for the transition into adulthood, but they also increase vulnerability to the development of a range of psychiatric disorders. Major reorganization of the dopamine system during adolescence is thought to underlie, in part, the associated behavioral changes and increased vulnerability. Here, we utilized fast scan cyclic voltammetry and microdialysis to examine differences in dopamine release as well as mechanisms that underlie differential dopamine signaling in the nucleus accumbens (NAc) core of adolescent (P28-35) and adult (P70-90) male rats. We show baseline differences between adult and adolescent-stimulated dopamine release in male rats, as well as opposite effects of the α6 nicotinic acetylcholine receptor (nAChR) on modulating dopamine release. The α6-selective blocker, α-conotoxin, increased dopamine release in early adolescent rats, but decreased dopamine release in rats beginning in middle adolescence and extending through adulthood. Strikingly, blockade of GABAA and GABAB receptors revealed that this α6-mediated increase in adolescent dopamine release requires NAc GABA signaling to occur. We confirm the role of α6 nAChRs and GABA in mediating this effect in vivo using microdialysis. Results herein suggest a multisynaptic mechanism potentially unique to the period of development that includes early adolescence, involving acetylcholine acting at α6-containing nAChRs to drive inhibitory GABA tone on dopamine release.

    1. Neuroscience
    Daniel Hoops, Robert Kyne ... Cecilia Flores
    Short Report

    Dopamine axons are the only axons known to grow during adolescence. Here, using rodent models, we examined how two proteins, Netrin-1 and its receptor, UNC5C, guide dopamine axons toward the prefrontal cortex and shape behaviour. We demonstrate in mice (Mus musculus) that dopamine axons reach the cortex through a transient gradient of Netrin-1-expressing cells – disrupting this gradient reroutes axons away from their target. Using a seasonal model (Siberian hamsters; Phodopus sungorus) we find that mesocortical dopamine development can be regulated by a natural environmental cue (daylength) in a sexually dimorphic manner – delayed in males, but advanced in females. The timings of dopamine axon growth and UNC5C expression are always phase-locked. Adolescence is an ill-defined, transitional period; we pinpoint neurodevelopmental markers underlying this period.