Epigenetic age-predictor for mice based on three CpG sites

  1. Yang Han
  2. Monika Eipel
  3. Julia Franzen
  4. Vadim Sakk
  5. Bertien Dethmers-Ausema
  6. Laura Yndriago
  7. Ander Izeta
  8. Gerald de Haan
  9. Hartmut Geiger
  10. Wolfgang Wagner  Is a corresponding author
  1. RWTH Aachen University Medical School, Germany
  2. University of Ulm, Germany
  3. University Medical Center Groningen, Netherlands
  4. Instituto Biodonostia, Spain

Abstract

Epigenetic clocks for mice were generated based on deep-sequencing analysis of the methylome. Here, we demonstrate that site-specific analysis of DNA methylation levels by pyrosequencing at only three CG dinucleotides (CpGs) in the genes Prima1, Hsf4, and Kcns1 facilitates precise estimation of chronological age in murine blood samples, too. DBA/2 mice revealed accelerated epigenetic aging as compared to C57BL6 mice, which is in line with their shorter life-expectancy. The three-CpG-predictor provides a simple and cost-effective biomarker to determine biological age in large intervention studies with mice.

Data availability

Raw data of pyrosequencing is provided as supplemental EXCEL table (Source data 1).

Article and author information

Author details

  1. Yang Han

    Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
    Competing interests
    No competing interests declared.
  2. Monika Eipel

    Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
    Competing interests
    No competing interests declared.
  3. Julia Franzen

    Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
    Competing interests
    No competing interests declared.
  4. Vadim Sakk

    Instituts of Molecular Medicine, University of Ulm, Ulm, Germany
    Competing interests
    No competing interests declared.
  5. Bertien Dethmers-Ausema

    Laboratory of Ageing Biology and Stem Cells, University Medical Center Groningen, Groningen, Netherlands
    Competing interests
    No competing interests declared.
  6. Laura Yndriago

    Tissue Engineering Laboratory, Instituto Biodonostia, San Sebastian, Spain
    Competing interests
    No competing interests declared.
  7. Ander Izeta

    Tissue Engineering Laboratory, Instituto Biodonostia, San Sebastian, Spain
    Competing interests
    No competing interests declared.
  8. Gerald de Haan

    Laboratory of Ageing Biology and Stem Cells, University Medical Center Groningen, Groningen, Netherlands
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9706-0138
  9. Hartmut Geiger

    Institute of Molecular Medicine, University of Ulm, Ulm, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5794-5430
  10. Wolfgang Wagner

    Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
    For correspondence
    wwagner@ukaachen.de
    Competing interests
    Wolfgang Wagner, is cofounder of Cygenia GmbH that can provide service for Epigenetic-Aging-Signatures (www.cygenia.com), but the method is fully described in this manuscript..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1971-3217

Funding

Else Kröner-Fresenius-Stiftung (2014_A193)

  • Wolfgang Wagner

Deutsche Forschungsgemeinschaft (SFBs 1275)

  • Hartmut Geiger

NIH Clinical Center (R01DK104814)

  • Hartmut Geiger

Bundesministerium für Bildung und Forschung (SyStarR)

  • Hartmut Geiger

Deutsche Forschungsgemeinschaft (DFG; WA 1706/8-1)

  • Wolfgang Wagner

Bundesministerium für Bildung und Forschung (BMBF; 01KU1402B)

  • Wolfgang Wagner

NIH Clinical Center (R01HL134617)

  • Hartmut Geiger

Netherland Organization for Scientific Research

  • Gerald de Haan

Deutsche Forschungsgemeinschaft (GRK 1789 CEMMA)

  • Hartmut Geiger

Deutsche Forschungsgemeinschaft (GRK 2254 HEIST)

  • Hartmut Geiger

Deutsche Forschungsgemeinschaft (SFBs 1074)

  • Hartmut Geiger

Deutsche Forschungsgemeinschaft (SFBs 1149)

  • Hartmut Geiger

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Experiments were approved by the Institutional Animal Care of the Ulm University as well as by Regierungspräsidium Tübingen and by the Institutional Animal Care and Use Committee of the University of Groningen (IACUC-RUG), respectively....To analyze age-associated changes in different tissues we used 3 young (67 days old) and 3 old (398 days old) C57BL/6J mice (JaxMice) in accordance with relevant Spanish and European guidelines after approval by the Biodonostia Animal Care Committee.

Copyright

© 2018, Han et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,469
    views
  • 775
    downloads
  • 52
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yang Han
  2. Monika Eipel
  3. Julia Franzen
  4. Vadim Sakk
  5. Bertien Dethmers-Ausema
  6. Laura Yndriago
  7. Ander Izeta
  8. Gerald de Haan
  9. Hartmut Geiger
  10. Wolfgang Wagner
(2018)
Epigenetic age-predictor for mice based on three CpG sites
eLife 7:e37462.
https://doi.org/10.7554/eLife.37462

Share this article

https://doi.org/10.7554/eLife.37462

Further reading

    1. Developmental Biology
    2. Evolutionary Biology
    Hope M Healey, Hayden B Penn ... William A Cresko
    Research Article

    Seahorses, pipefishes, and seadragons are fishes from the family Syngnathidae that have evolved extraordinary traits including male pregnancy, elongated snouts, loss of teeth, and dermal bony armor. The developmental genetic and cellular changes that led to the evolution of these traits are largely unknown. Recent syngnathid genome assemblies revealed suggestive gene content differences and provided the opportunity for detailed genetic analyses. We created a single-cell RNA sequencing atlas of Gulf pipefish embryos to understand the developmental basis of four traits: derived head shape, toothlessness, dermal armor, and male pregnancy. We completed marker gene analyses, built genetic networks, and examined the spatial expression of select genes. We identified osteochondrogenic mesenchymal cells in the elongating face that express regulatory genes bmp4, sfrp1a, and prdm16. We found no evidence for tooth primordia cells, and we observed re-deployment of osteoblast genetic networks in developing dermal armor. Finally, we found that epidermal cells expressed nutrient processing and environmental sensing genes, potentially relevant for the brooding environment. The examined pipefish evolutionary innovations are composed of recognizable cell types, suggesting that derived features originate from changes within existing gene networks. Future work addressing syngnathid gene networks across multiple stages and species is essential for understanding how the novelties of these fish evolved.

    1. Developmental Biology
    2. Genetics and Genomics
    Mehul Vora, Jonathan Dietz ... Cathy Savage-Dunn
    Research Article

    Smads and their transcription factor partners mediate the transcriptional responses of target cells to secreted ligands of the transforming growth factor-β (TGF-β) family, including those of the conserved bone morphogenetic protein (BMP) family, yet only a small number of direct target genes have been well characterized. In C. elegans, the BMP2/4 ortholog DBL-1 regulates multiple biological functions, including body size, via a canonical receptor-Smad signaling cascade. Here, we identify functional binding sites for SMA-3/Smad and its transcriptional partner SMA-9/Schnurri based on ChIP-seq peaks (identified by modEncode) and expression differences of nearby genes identified from RNA-seq analysis of corresponding mutants. We found that SMA-3 and SMA-9 have both overlapping and unique target genes. At a genome-wide scale, SMA-3/Smad acts as a transcriptional activator, whereas SMA-9/Schnurri direct targets include both activated and repressed genes. Mutations in sma-9 partially suppress the small body size phenotype of sma-3, suggesting some level of antagonism between these factors and challenging the prevailing model for Schnurri function. Functional analysis of target genes revealed a novel role in body size for genes involved in one-carbon metabolism and in the endoplasmic reticulum (ER) secretory pathway, including the disulfide reductase dpy-11. Our findings indicate that Smads and SMA-9/Schnurri have previously unappreciated complex genetic and genomic regulatory interactions that in turn regulate the secretion of extracellular components like collagen into the cuticle to mediate body size regulation.