Pre-saccadic remapping relies on dynamics of spatial attention

  1. Martin Szinte  Is a corresponding author
  2. Donatas Jonikaitis
  3. Dragan Rangelov
  4. Heiner Deubel
  1. Vrije Universiteit Amsterdam, Netherlands
  2. Howard Hughes Medical Institute, Stanford University School of Medicine, United States
  3. The University of Queensland, Australia
  4. Ludwig-Maximilians Universität München, Germany

Abstract

Each saccade shifts the projections of the visual scene on the retina. It has been proposed that the receptive fields of neurons in oculomotor areas are predictively remapped to account for these shifts. While remapping of the whole visual scene seems prohibitively complex, selection by attention may limit these processes to a subset of attended locations. Because attentional selection consumes time, remapping of attended locations should evolve in time, too. In our study, we cued a spatial location by presenting an attention-capturing cue at different times before a saccade and constructed maps of attentional allocation across the visual field. We observed no remapping of attention when the cue appeared shortly before saccade. In contrast, when the cue appeared sufficiently early before saccade, attentional resources were reallocated precisely to the remapped location. Our results show that pre-saccadic remapping takes time to develop suggesting that it relies on the spatial and temporal dynamics of spatial attention.

Data availability

All files are available from the OSF database: URL: https://osf.io/3tru6.

The following data sets were generated

Article and author information

Author details

  1. Martin Szinte

    Department of Cognitive Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
    For correspondence
    martin.szinte@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2040-4005
  2. Donatas Jonikaitis

    Department of Neurobiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9851-0903
  3. Dragan Rangelov

    Queensland Brain Institute, The University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Heiner Deubel

    Allgemeine und Experimentelle Psychologie, Ludwig-Maximilians Universität München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.

Funding

Deutsche Forschungsgemeinschaft (SZ343/1)

  • Martin Szinte

Deutsche Forschungsgemeinschaft (RA2191/1-1)

  • Dragan Rangelov

Marie Skłodowska-Curie Individual Fellowship (704537)

  • Martin Szinte

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Experiments were designed according to the ethical requirements specified by the Faculty for Psychology and Pedagogics of the Ludwig-Maximilians-Universität München (approval number 13_b_2015) for experiments involving eye tracking. All participants provided written informed consent, including a consent to publish anonymized data.

Reviewing Editor

  1. Andrew J King, University of Oxford, United Kingdom

Publication history

  1. Received: April 16, 2018
  2. Accepted: December 30, 2018
  3. Accepted Manuscript published: December 31, 2018 (version 1)
  4. Version of Record published: January 10, 2019 (version 2)

Copyright

© 2018, Szinte et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,666
    Page views
  • 246
    Downloads
  • 12
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Martin Szinte
  2. Donatas Jonikaitis
  3. Dragan Rangelov
  4. Heiner Deubel
(2018)
Pre-saccadic remapping relies on dynamics of spatial attention
eLife 7:e37598.
https://doi.org/10.7554/eLife.37598

Further reading

    1. Neuroscience
    Arefeh Sherafati et al.
    Research Article Updated

    Cochlear implants are neuroprosthetic devices that can restore hearing in people with severe to profound hearing loss by electrically stimulating the auditory nerve. Because of physical limitations on the precision of this stimulation, the acoustic information delivered by a cochlear implant does not convey the same level of acoustic detail as that conveyed by normal hearing. As a result, speech understanding in listeners with cochlear implants is typically poorer and more effortful than in listeners with normal hearing. The brain networks supporting speech understanding in listeners with cochlear implants are not well understood, partly due to difficulties obtaining functional neuroimaging data in this population. In the current study, we assessed the brain regions supporting spoken word understanding in adult listeners with right unilateral cochlear implants (n=20) and matched controls (n=18) using high-density diffuse optical tomography (HD-DOT), a quiet and non-invasive imaging modality with spatial resolution comparable to that of functional MRI. We found that while listening to spoken words in quiet, listeners with cochlear implants showed greater activity in the left prefrontal cortex than listeners with normal hearing, specifically in a region engaged in a separate spatial working memory task. These results suggest that listeners with cochlear implants require greater cognitive processing during speech understanding than listeners with normal hearing, supported by compensatory recruitment of the left prefrontal cortex.

    1. Neuroscience
    Mohammad Ali Salehinejad et al.
    Research Article Updated

    Sleep strongly affects synaptic strength, making it critical for cognition, especially learning and memory formation. Whether and how sleep deprivation modulates human brain physiology and cognition is not well understood. Here we examined how overnight sleep deprivation vs overnight sufficient sleep affects (a) cortical excitability, measured by transcranial magnetic stimulation, (b) inducibility of long-term potentiation (LTP)- and long-term depression (LTD)-like plasticity via transcranial direct current stimulation (tDCS), and (c) learning, memory, and attention. The results suggest that sleep deprivation upscales cortical excitability due to enhanced glutamate-related cortical facilitation and decreases and/or reverses GABAergic cortical inhibition. Furthermore, tDCS-induced LTP-like plasticity (anodal) abolishes while the inhibitory LTD-like plasticity (cathodal) converts to excitatory LTP-like plasticity under sleep deprivation. This is associated with increased EEG theta oscillations due to sleep pressure. Finally, we show that learning and memory formation, behavioral counterparts of plasticity, and working memory and attention, which rely on cortical excitability, are impaired during sleep deprivation. Our data indicate that upscaled brain excitability and altered plasticity, due to sleep deprivation, are associated with impaired cognitive performance. Besides showing how brain physiology and cognition undergo changes (from neurophysiology to higher-order cognition) under sleep pressure, the findings have implications for variability and optimal application of noninvasive brain stimulation.