The adhesion function of the sodium channel beta subunit (β1) contributes to cardiac action potential propagation

  1. Rengasayee Veeraraghavan  Is a corresponding author
  2. Gregory S Hoeker
  3. Anita Alvarez-Laviada
  4. Daniel Hoagland
  5. Xiaoping Wan
  6. D Ryan King
  7. Jose Sanchez-Alonso
  8. Chunling Chen
  9. Jane Jourdan
  10. Lori L Isom
  11. Isabelle Deschenes
  12. James Smyth
  13. Julia Gorelik
  14. Steven Poelzing
  15. Robert G Gourdie  Is a corresponding author
  1. Virginia Polytechnic University, United States
  2. Imperial College London, United Kingdom
  3. Case Western Reserve University, United States
  4. University of Michigan Medical School, United States

Abstract

Computational modeling indicates that cardiac conduction may involve ephaptic coupling - intercellular communication involving electrochemical signaling across narrow extracellular clefts between cardiomyocytes. We hypothesized that β1(SCN1B) - mediated adhesion scaffolds trans-activating NaV1.5 (SCN5A) channels within narrow (V1.5. Smart patch clamp (SPC) indicated greater sodium current density (INa) at perinexi, relative to non-junctional sites. A novel, rationally designed peptide, βadp1, potently and selectively inhibited β1-mediated adhesion, in electric cell-substrate impedance sensing studies. βadp1 significantly widened perinexi in guinea pig ventricles, and selectively reduced perinexal INa, but not whole cell INa, in myocyte monolayers. In optical mapping studies, βadp1 precipitated arrhythmogenic conduction slowing. In summary, β1-mediated adhesion at the perinexus facilitates action potential propagation between cardiomyocytes, and may represent a novel target for anti-arrhythmic therapies.

Data availability

The raw data generated in this study is available via Dryad (doi:10.5061/dryad.10351qn). The raw STORM movies are available on request from the corresponding author due to their large size.

The following data sets were generated

Article and author information

Author details

  1. Rengasayee Veeraraghavan

    Virginia Tech Carilion Research Institute, Virginia Polytechnic University, Roanoke, United States
    For correspondence
    saiv@vt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8364-2222
  2. Gregory S Hoeker

    Virginia Tech Carilion Research Institute, Virginia Polytechnic University, Roanoke, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Anita Alvarez-Laviada

    Department of Myocardial Function, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Daniel Hoagland

    Virginia Tech Carilion Research Institute, Virginia Polytechnic University, Roanoke, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Xiaoping Wan

    Department of Medicine, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. D Ryan King

    Virginia Tech Carilion Research Institute, Virginia Polytechnic University, Roanoke, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jose Sanchez-Alonso

    Department of Myocardial Function, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Chunling Chen

    Department of Pharmacology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jane Jourdan

    Virginia Tech Carilion Research Institute, Virginia Polytechnic University, Roanoke, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Lori L Isom

    Department of Pharmacology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Isabelle Deschenes

    Department of Medicine, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. James Smyth

    Virginia Tech Carilion Research Institute, Virginia Polytechnic University, Roanoke, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Julia Gorelik

    Department of Myocardial Function, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. Steven Poelzing

    Virginia Tech Carilion Research Institute, Virginia Polytechnic University, Roanoke, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Robert G Gourdie

    Virginia Tech Carilion Research Institute, Virginia Polytechnic University, Roanoke, United States
    For correspondence
    gourdier@vtc.vt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6021-0796

Funding

National Heart, Lung, and Blood Institute (RO1 HL56728-15A2)

  • Robert G Gourdie

American Heart Association (16SDG29870007)

  • Rengasayee Veeraraghavan

National Heart, Lung, and Blood Institute (R01 HL102298-01A1)

  • Steven Poelzing

National Institutes of Health (R01 HL102298-01A1)

  • James Smyth

National Institutes of Health (R37NS076752)

  • Lori L Isom

National Heart, Lung, and Blood Institute (RO1 HL HL141855-01)

  • Robert G Gourdie

National Heart, Lung, and Blood Institute (RO1 HL HL141855-01)

  • Steven Poelzing

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Robert S Kaas, Columbia University Medical Center, United States

Ethics

Animal experimentation: The investigation conforms to the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH Publication No. 85-23, revised 1996). All animal study protocols (15-130, 15-134, 12-140) were approved by the Institutional Animal Care and Use Committee at the Virginia Polytechnic University.

Version history

  1. Received: April 17, 2018
  2. Accepted: August 6, 2018
  3. Accepted Manuscript published: August 14, 2018 (version 1)
  4. Accepted Manuscript updated: August 16, 2018 (version 2)
  5. Version of Record published: September 4, 2018 (version 3)
  6. Version of Record updated: October 19, 2018 (version 4)
  7. Version of Record updated: November 30, 2022 (version 5)

Copyright

© 2018, Veeraraghavan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,229
    views
  • 452
    downloads
  • 76
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rengasayee Veeraraghavan
  2. Gregory S Hoeker
  3. Anita Alvarez-Laviada
  4. Daniel Hoagland
  5. Xiaoping Wan
  6. D Ryan King
  7. Jose Sanchez-Alonso
  8. Chunling Chen
  9. Jane Jourdan
  10. Lori L Isom
  11. Isabelle Deschenes
  12. James Smyth
  13. Julia Gorelik
  14. Steven Poelzing
  15. Robert G Gourdie
(2018)
The adhesion function of the sodium channel beta subunit (β1) contributes to cardiac action potential propagation
eLife 7:e37610.
https://doi.org/10.7554/eLife.37610

Share this article

https://doi.org/10.7554/eLife.37610

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lucie Crhak Khaitova, Pavlina Mikulkova ... Karel Riha
    Research Article

    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.

    1. Cell Biology
    Wan-ping Yang, Mei-qi Li ... Qian-qian Luo
    Research Article

    High-altitude polycythemia (HAPC) affects individuals living at high altitudes, characterized by increased red blood cells (RBCs) production in response to hypoxic conditions. The exact mechanisms behind HAPC are not fully understood. We utilized a mouse model exposed to hypobaric hypoxia (HH), replicating the environmental conditions experienced at 6000 m above sea level, coupled with in vitro analysis of primary splenic macrophages under 1% O2 to investigate these mechanisms. Our findings indicate that HH significantly boosts erythropoiesis, leading to erythrocytosis and splenic changes, including initial contraction to splenomegaly over 14 days. A notable decrease in red pulp macrophages (RPMs) in the spleen, essential for RBCs processing, was observed, correlating with increased iron release and signs of ferroptosis. Prolonged exposure to hypoxia further exacerbated these effects, mirrored in human peripheral blood mononuclear cells. Single-cell sequencing showed a marked reduction in macrophage populations, affecting the spleen’s ability to clear RBCs and contributing to splenomegaly. Our findings suggest splenic ferroptosis contributes to decreased RPMs, affecting erythrophagocytosis and potentially fostering continuous RBCs production in HAPC. These insights could guide the development of targeted therapies for HAPC, emphasizing the importance of splenic macrophages in disease pathology.