The adhesion function of the sodium channel beta subunit (β1) contributes to cardiac action potential propagation

  1. Rengasayee Veeraraghavan  Is a corresponding author
  2. Gregory S Hoeker
  3. Anita Alvarez-Laviada
  4. Daniel Hoagland
  5. Xiaoping Wan
  6. D Ryan King
  7. Jose Sanchez-Alonso
  8. Chunling Chen
  9. Jane Jourdan
  10. Lori L Isom
  11. Isabelle Deschenes
  12. James Smyth
  13. Julia Gorelik
  14. Steven Poelzing
  15. Robert G Gourdie  Is a corresponding author
  1. Virginia Polytechnic University, United States
  2. Imperial College London, United Kingdom
  3. Case Western Reserve University, United States
  4. University of Michigan Medical School, United States

Abstract

Computational modeling indicates that cardiac conduction may involve ephaptic coupling - intercellular communication involving electrochemical signaling across narrow extracellular clefts between cardiomyocytes. We hypothesized that β1(SCN1B) - mediated adhesion scaffolds trans-activating NaV1.5 (SCN5A) channels within narrow (<30 nm) perinexal clefts adjacent to gap junctions (GJs), facilitating ephaptic coupling. Super-resolution imaging indicated preferential β1 localization at the perinexus, where it co-locates with NaV1.5. Smart patch clamp (SPC) indicated greater sodium current density (INa) at perinexi, relative to non-junctional sites. A novel, rationally designed peptide, βadp1, potently and selectively inhibited β1-mediated adhesion, in electric cell-substrate impedance sensing studies. βadp1 significantly widened perinexi in guinea pig ventricles, and selectively reduced perinexal INa, but not whole cell INa, in myocyte monolayers. In optical mapping studies, βadp1 precipitated arrhythmogenic conduction slowing. In summary, β1-mediated adhesion at the perinexus facilitates action potential propagation between cardiomyocytes, and may represent a novel target for anti-arrhythmic therapies.

Data availability

The raw data generated in this study is available via Dryad (doi:10.5061/dryad.10351qn). The raw STORM movies are available on request from the corresponding author due to their large size.

The following data sets were generated

Article and author information

Author details

  1. Rengasayee Veeraraghavan

    Virginia Tech Carilion Research Institute, Virginia Polytechnic University, Roanoke, United States
    For correspondence
    saiv@vt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8364-2222
  2. Gregory S Hoeker

    Virginia Tech Carilion Research Institute, Virginia Polytechnic University, Roanoke, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Anita Alvarez-Laviada

    Department of Myocardial Function, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Daniel Hoagland

    Virginia Tech Carilion Research Institute, Virginia Polytechnic University, Roanoke, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Xiaoping Wan

    Department of Medicine, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. D Ryan King

    Virginia Tech Carilion Research Institute, Virginia Polytechnic University, Roanoke, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jose Sanchez-Alonso

    Department of Myocardial Function, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Chunling Chen

    Department of Pharmacology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jane Jourdan

    Virginia Tech Carilion Research Institute, Virginia Polytechnic University, Roanoke, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Lori L Isom

    Department of Pharmacology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Isabelle Deschenes

    Department of Medicine, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. James Smyth

    Virginia Tech Carilion Research Institute, Virginia Polytechnic University, Roanoke, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Julia Gorelik

    Department of Myocardial Function, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. Steven Poelzing

    Virginia Tech Carilion Research Institute, Virginia Polytechnic University, Roanoke, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Robert G Gourdie

    Virginia Tech Carilion Research Institute, Virginia Polytechnic University, Roanoke, United States
    For correspondence
    gourdier@vtc.vt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6021-0796

Funding

National Heart, Lung, and Blood Institute (RO1 HL56728-15A2)

  • Robert G Gourdie

American Heart Association (16SDG29870007)

  • Rengasayee Veeraraghavan

National Heart, Lung, and Blood Institute (R01 HL102298-01A1)

  • Steven Poelzing

National Institutes of Health (R01 HL102298-01A1)

  • James Smyth

National Institutes of Health (R37NS076752)

  • Lori L Isom

National Heart, Lung, and Blood Institute (RO1 HL HL141855-01)

  • Robert G Gourdie

National Heart, Lung, and Blood Institute (RO1 HL HL141855-01)

  • Steven Poelzing

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The investigation conforms to the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH Publication No. 85-23, revised 1996). All animal study protocols (15-130, 15-134, 12-140) were approved by the Institutional Animal Care and Use Committee at the Virginia Polytechnic University.

Copyright

© 2018, Veeraraghavan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,439
    views
  • 475
    downloads
  • 108
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rengasayee Veeraraghavan
  2. Gregory S Hoeker
  3. Anita Alvarez-Laviada
  4. Daniel Hoagland
  5. Xiaoping Wan
  6. D Ryan King
  7. Jose Sanchez-Alonso
  8. Chunling Chen
  9. Jane Jourdan
  10. Lori L Isom
  11. Isabelle Deschenes
  12. James Smyth
  13. Julia Gorelik
  14. Steven Poelzing
  15. Robert G Gourdie
(2018)
The adhesion function of the sodium channel beta subunit (β1) contributes to cardiac action potential propagation
eLife 7:e37610.
https://doi.org/10.7554/eLife.37610

Share this article

https://doi.org/10.7554/eLife.37610

Further reading

    1. Cell Biology
    Dharmendra Kumar Nath, Subash Dhakal, Youngseok Lee
    Research Advance

    Understanding how the brain controls nutrient storage is pivotal. Transient receptor potential (TRP) channels are conserved from insects to humans. They serve in detecting environmental shifts and in acting as internal sensors. Previously, we demonstrated the role of TRPγ in nutrient-sensing behavior (Dhakal et al., 2022). Here, we found that a TRPγ mutant exhibited in Drosophila melanogaster is required for maintaining normal lipid and protein levels. In animals, lipogenesis and lipolysis control lipid levels in response to food availability. Lipids are mostly stored as triacylglycerol in the fat bodies (FBs) of D. melanogaster. Interestingly, trpγ deficient mutants exhibited elevated TAG levels and our genetic data indicated that Dh44 neurons are indispensable for normal lipid storage but not protein storage. The trpγ mutants also exhibited reduced starvation resistance, which was attributed to insufficient lipolysis in the FBs. This could be mitigated by administering lipase or metformin orally, indicating a potential treatment pathway. Gene expression analysis indicated that trpγ knockout downregulated brummer, a key lipolytic gene, resulting in chronic lipolytic deficits in the gut and other fat tissues. The study also highlighted the role of specific proteins, including neuropeptide DH44 and its receptor DH44R2 in lipid regulation. Our findings provide insight into the broader question of how the brain and gut regulate nutrient storage.

    1. Cell Biology
    2. Immunology and Inflammation
    Mykhailo Vladymyrov, Luca Marchetti ... Britta Engelhardt
    Tools and Resources

    The endothelial blood-brain barrier (BBB) strictly controls immune cell trafficking into the central nervous system (CNS). In neuroinflammatory diseases such as multiple sclerosis, this tight control is, however, disturbed, leading to immune cell infiltration into the CNS. The development of in vitro models of the BBB combined with microfluidic devices has advanced our understanding of the cellular and molecular mechanisms mediating the multistep T-cell extravasation across the BBB. A major bottleneck of these in vitro studies is the absence of a robust and automated pipeline suitable for analyzing and quantifying the sequential interaction steps of different immune cell subsets with the BBB under physiological flow in vitro. Here, we present the under-flow migration tracker (UFMTrack) framework for studying immune cell interactions with endothelial monolayers under physiological flow. We then showcase a pipeline built based on it to study the entire multistep extravasation cascade of immune cells across brain microvascular endothelial cells under physiological flow in vitro. UFMTrack achieves 90% track reconstruction efficiency and allows for scaling due to the reduction of the analysis cost and by eliminating experimenter bias. This allowed for an in-depth analysis of all behavioral regimes involved in the multistep immune cell extravasation cascade. The study summarizes how UFMTrack can be employed to delineate the interactions of CD4+ and CD8+ T cells with the BBB under physiological flow. We also demonstrate its applicability to the other BBB models, showcasing broader applicability of the developed framework to a range of immune cell-endothelial monolayer interaction studies. The UFMTrack framework along with the generated datasets is publicly available in the corresponding repositories.