E-cadherin binds to desmoglein to facilitate desmosome assembly

  1. Omer Shafraz
  2. Matthias Rübsam
  3. Sara N Stahley
  4. Amber Caldara
  5. Andrew P Kowalczyk
  6. Carien M Niessen
  7. Sanjeevi Sivasankar  Is a corresponding author
  1. Iowa State University, United States
  2. University of Cologne, Germany
  3. Emory University School of Medicine, United States

Abstract

Desmosomes are adhesive junctions composed of two desmosomal cadherins: desmocollin (Dsc) and desmoglein (Dsg). Previous studies demonstrate that E-cadherin (Ecad), an adhesive protein that interacts in both trans and cis conformations, facilitates desmosome assembly via an unknown mechanism. Here we use structure-function analysis to resolve the mechanistic roles of Ecad in desmosome formation. Using AFM force measurements, we demonstrate that Ecad interacts with isoform 2 of Dsg via a conserved Leu-175 on the Ecad cis binding interface. Super-resolution imaging reveals that Ecad is enriched in nascent desmosomes, supporting a role for Ecad in early desmosome assembly. Finally, confocal imaging demonstrates that desmosome assembly is initiated at sites of Ecad mediated adhesion, and that Ecad-L175 is required for efficient Dsg2 and desmoplakin recruitment to intercellular contacts. We propose that Ecad trans interactions at nascent cell-cell contacts initiate the recruitment of Dsg through direct cis interactions with Ecad which facilitates desmosome assembly.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Omer Shafraz

    Department of Physics and Astronomy, Iowa State University, Ames, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Matthias Rübsam

    Department of Dermatology, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Sara N Stahley

    Department of Cell Biology, Emory University School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Amber Caldara

    Department of Cell Biology, Emory University School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Andrew P Kowalczyk

    Department of Cell Biology, Emory University School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Carien M Niessen

    Department of Dermatology, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Sanjeevi Sivasankar

    Department of Physics and Astronomy, Iowa State University, Ames, United States
    For correspondence
    sivasank@iastate.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2593-0477

Funding

American Heart Association (12SDG9320022)

  • Sanjeevi Sivasankar

National Institute of General Medical Sciences (R01GM121885)

  • Sanjeevi Sivasankar

Deutsche Forschungsgemeinschaft (DFG SFB 829 A1)

  • Carien M Niessen

Deutsche Forschungsgemeinschaft (DFG SFB 829 Z2)

  • Carien M Niessen

Deutsche Forschungsgemeinschaft (DFG NI 1234/6-1)

  • Carien M Niessen

National Institute of Arthritis and Musculoskeletal and Skin Diseases (R01AR048266)

  • Andrew P Kowalczyk

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. William I Weis, Stanford University Medical Center, United States

Version history

  1. Received: April 17, 2018
  2. Accepted: July 10, 2018
  3. Accepted Manuscript published: July 12, 2018 (version 1)
  4. Version of Record published: July 30, 2018 (version 2)

Copyright

© 2018, Shafraz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,675
    views
  • 503
    downloads
  • 67
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Omer Shafraz
  2. Matthias Rübsam
  3. Sara N Stahley
  4. Amber Caldara
  5. Andrew P Kowalczyk
  6. Carien M Niessen
  7. Sanjeevi Sivasankar
(2018)
E-cadherin binds to desmoglein to facilitate desmosome assembly
eLife 7:e37629.
https://doi.org/10.7554/eLife.37629

Share this article

https://doi.org/10.7554/eLife.37629

Further reading

    1. Cancer Biology
    2. Cell Biology
    Mengya Zhao, Beiying Dai ... Yijun Chen
    Research Article

    Philadelphia chromosome-positive (Ph+) leukemia is a fatal hematological malignancy. Although standard treatments with tyrosine kinase inhibitors (TKIs) have achieved remarkable success in prolonging patient survival, intolerance, relapse, and TKI resistance remain serious issues for patients with Ph+ leukemia. Here, we report a new leukemogenic process in which RAPSYN and BCR-ABL co-occur in Ph+ leukemia, and RAPSYN mediates the neddylation of BCR-ABL. Consequently, neddylated BCR-ABL enhances the stability by competing its c-CBL-mediated degradation. Furthermore, SRC phosphorylates RAPSYN to activate its NEDD8 E3 ligase activity, promoting BCR-ABL stabilization and disease progression. Moreover, in contrast to in vivo ineffectiveness of PROTAC-based degraders, depletion of RAPSYN expression, or its ligase activity decreased BCR-ABL stability and, in turn, inhibited tumor formation and growth. Collectively, these findings represent an alternative to tyrosine kinase activity for the oncoprotein and leukemogenic cells and generate a rationale of targeting RAPSYN-mediated BCR-ABL neddylation for the treatment of Ph+ leukemia.

    1. Cell Biology
    2. Genetics and Genomics
    Yangzi Zhao, Lijun Ren ... Zhukuan Cheng
    Research Article

    Cohesin is a multi-subunit protein that plays a pivotal role in holding sister chromatids together during cell division. Sister chromatid cohesion 3 (SCC3), constituents of cohesin complex, is highly conserved from yeast to mammals. Since the deletion of individual cohesin subunit always causes lethality, it is difficult to dissect its biological function in both mitosis and meiosis. Here, we obtained scc3 weak mutants using CRISPR-Cas9 system to explore its function during rice mitosis and meiosis. The scc3 weak mutants displayed obvious vegetative defects and complete sterility, underscoring the essential roles of SCC3 in both mitosis and meiosis. SCC3 is localized on chromatin from interphase to prometaphase in mitosis. However, in meiosis, SCC3 acts as an axial element during early prophase I and subsequently situates onto centromeric regions following the disassembly of the synaptonemal complex. The loading of SCC3 onto meiotic chromosomes depends on REC8. scc3 shows severe defects in homologous pairing and synapsis. Consequently, SCC3 functions as an axial element that is essential for maintaining homologous chromosome pairing and synapsis during meiosis.