1. Cell Biology
Download icon

E-cadherin binds to desmoglein to facilitate desmosome assembly

  1. Omer Shafraz
  2. Matthias Rübsam
  3. Sara N Stahley
  4. Amber Caldara
  5. Andrew P Kowalczyk
  6. Carien M Niessen
  7. Sanjeevi Sivasankar  Is a corresponding author
  1. Iowa State University, United States
  2. University of Cologne, Germany
  3. Emory University School of Medicine, United States
Research Article
  • Cited 0
  • Views 212
  • Annotations
Cite as: eLife 2018;7:e37629 doi: 10.7554/eLife.37629

Abstract

Desmosomes are adhesive junctions composed of two desmosomal cadherins: desmocollin (Dsc) and desmoglein (Dsg). Previous studies demonstrate that E-cadherin (Ecad), an adhesive protein that interacts in both trans and cis conformations, facilitates desmosome assembly via an unknown mechanism. Here we use structure-function analysis to resolve the mechanistic roles of Ecad in desmosome formation. Using AFM force measurements, we demonstrate that Ecad interacts with isoform 2 of Dsg via a conserved Leu-175 on the Ecad cis binding interface. Super-resolution imaging reveals that Ecad is enriched in nascent desmosomes, supporting a role for Ecad in early desmosome assembly. Finally, confocal imaging demonstrates that desmosome assembly is initiated at sites of Ecad mediated adhesion, and that Ecad-L175 is required for efficient Dsg2 and desmoplakin recruitment to intercellular contacts. We propose that Ecad trans interactions at nascent cell-cell contacts initiate the recruitment of Dsg through direct cis interactions with Ecad which facilitates desmosome assembly.

Article and author information

Author details

  1. Omer Shafraz

    Department of Physics and Astronomy, Iowa State University, Ames, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Matthias Rübsam

    Department of Dermatology, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Sara N Stahley

    Department of Cell Biology, Emory University School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Amber Caldara

    Department of Cell Biology, Emory University School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Andrew P Kowalczyk

    Department of Cell Biology, Emory University School of Medicine, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Carien M Niessen

    Department of Dermatology, University of Cologne, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Sanjeevi Sivasankar

    Department of Physics and Astronomy, Iowa State University, Ames, United States
    For correspondence
    sivasank@iastate.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon 0000-0003-2593-0477

Funding

American Heart Association (12SDG9320022)

  • Sanjeevi Sivasankar

National Institute of General Medical Sciences (R01GM121885)

  • Sanjeevi Sivasankar

Deutsche Forschungsgemeinschaft (DFG SFB 829 A1)

  • Carien M Niessen

Deutsche Forschungsgemeinschaft (DFG SFB 829 Z2)

  • Carien M Niessen

Deutsche Forschungsgemeinschaft (DFG NI 1234/6-1)

  • Carien M Niessen

National Institute of Arthritis and Musculoskeletal and Skin Diseases (R01AR048266)

  • Andrew P Kowalczyk

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. William I Weis, Reviewing Editor, Stanford University Medical Center, United States

Publication history

  1. Received: April 17, 2018
  2. Accepted: July 10, 2018
  3. Accepted Manuscript published: July 12, 2018 (version 1)

Copyright

© 2018, Shafraz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 212
    Page views
  • 52
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Developmental Biology
    Yara E Sanchez-Corrales et al.
    Research Article
    1. Cell Biology
    2. Neuroscience
    Andrew T Moehlman et al.
    Research Article