Germline VRC01 antibody recognition of a modified clade C HIV-1 envelope trimer and a glycosylated HIV-1 gp120 core

  1. Andrew J Borst
  2. Connor E Weidle
  3. Matthew D Gray
  4. Brandon Frenz
  5. Joost Snijder
  6. M Gordon Joyce
  7. Ivelin S Georgiev
  8. Guillaume BE Stewart-Jones
  9. Peter D Kwong
  10. Andrew T McGuire
  11. Frank DiMaio
  12. Leonidas Stamatatos  Is a corresponding author
  13. Marie Pancera  Is a corresponding author
  14. David Veesler  Is a corresponding author
  1. University of Washington, United States
  2. Fred Hutchinson Cancer Research Center, United States
  3. National Institute of Allergy and Infectious Diseases, National Institutes of Health, United States

Abstract

VRC01 broadly neutralizing antibodies (bnAbs) target the CD4-binding site (CD4BS) of the human immunodeficiency virus-1 (HIV-1) envelope glycoprotein (Env). Unlike mature antibodies, corresponding VRC01 germline precursors poorly bind to Env. Immunogen design has mostly relied on glycan removal from trimeric Env constructs and has had limited success in eliciting mature VRC01 bnAbs. To better understand elicitation of such bnAbs, we characterized the inferred germline precursor of VRC01 in complex with a modified trimeric 426c Env by cryo-electron microscopy and a 426c gp120 core by X-ray crystallography, biolayer interferometry, immunoprecipitation, and glycoproteomics. Our results show VRC01 germline antibodies interacted with a wild-type 426c core lacking variable loops 1-3 in the presence or absence of a glycan at position Asn276, with the latter form binding with higher affinity than the former. Interactions in the presence of an Asn276 oligosaccharide could be enhanced upon carbohydrate shortening, which should be considered for immunogen design.

Data availability

Mass spectrometry data have been deposited to the PRIDE archive under accession number PXD011494. CryoEM maps are available for download from the EMDB under accession numbers EMD-9294 (426cDS-SOSIP D3†-VRC01GL, 3 Fabs, sharpened), EMD-9295 (426cDS-SOSIP D3†-VRC01GL, 3 Fabs, unsharpened), EMD-9304 (426cDS-SOSIP D3†-VRC01GL, 2 fabs, unsharpened), and EMD-9303 (426cDS-SOSIP D3†-VRC01GL, 2 fabs, sharpened). Structures have been deposited to the PDB under accession numbers PDB-6MYY (426cDS-SOSIP D3†-VRC01GL, 3 Fabs]), PDB-6MZJ (426cDS-SOSIP D3†-VRC01GL, 2 fabs), and PDB-6MFT (426c core†-VRC01GL).

The following data sets were generated

Article and author information

Author details

  1. Andrew J Borst

    Department of Biochemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4297-7824
  2. Connor E Weidle

    Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Matthew D Gray

    Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Brandon Frenz

    Department of Biochemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Joost Snijder

    Department of Biochemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. M Gordon Joyce

    Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Ivelin S Georgiev

    Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Guillaume BE Stewart-Jones

    Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Peter D Kwong

    Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Andrew T McGuire

    Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Frank DiMaio

    Department of Biochemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7524-8938
  12. Leonidas Stamatatos

    Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    For correspondence
    lstamata@fredhutch.org
    Competing interests
    The authors declare that no competing interests exist.
  13. Marie Pancera

    Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    For correspondence
    mpancera@fredhutch.org
    Competing interests
    The authors declare that no competing interests exist.
  14. David Veesler

    Department of Biochemistry, University of Washington, Seattle, United States
    For correspondence
    dveesler@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6019-8675

Funding

National Institute of General Medical Sciences (R01GM120553)

  • David Veesler

National Institute of Allergy and Infectious Diseases (R01AI081625)

  • Leonidas Stamatatos

Pew Charitable Trusts

  • David Veesler

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Pamela J Bjorkman, California Institute of Technology, United States

Version history

  1. Received: April 18, 2018
  2. Accepted: October 11, 2018
  3. Accepted Manuscript published: November 7, 2018 (version 1)
  4. Version of Record published: November 15, 2018 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,774
    views
  • 380
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrew J Borst
  2. Connor E Weidle
  3. Matthew D Gray
  4. Brandon Frenz
  5. Joost Snijder
  6. M Gordon Joyce
  7. Ivelin S Georgiev
  8. Guillaume BE Stewart-Jones
  9. Peter D Kwong
  10. Andrew T McGuire
  11. Frank DiMaio
  12. Leonidas Stamatatos
  13. Marie Pancera
  14. David Veesler
(2018)
Germline VRC01 antibody recognition of a modified clade C HIV-1 envelope trimer and a glycosylated HIV-1 gp120 core
eLife 7:e37688.
https://doi.org/10.7554/eLife.37688

Share this article

https://doi.org/10.7554/eLife.37688

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Shun Kai Yang, Shintaroh Kubo ... Khanh Huy Bui
    Research Article

    Acetylation of α-tubulin at the lysine 40 residue (αK40) by αTAT1/MEC-17 acetyltransferase modulates microtubule properties and occurs in most eukaryotic cells. Previous literatures suggest that acetylated microtubules are more stable and damage resistant. αK40 acetylation is the only known microtubule luminal post-translational modification site. The luminal location suggests that the modification tunes the lateral interaction of protofilaments inside the microtubule. In this study, we examined the effect of tubulin acetylation on the doublet microtubule (DMT) in the cilia of Tetrahymena thermophila using a combination of cryo-electron microscopy, molecular dynamics, and mass spectrometry. We found that αK40 acetylation exerts a small-scale effect on the DMT structure and stability by influencing the lateral rotational angle. In addition, comparative mass spectrometry revealed a link between αK40 acetylation and phosphorylation in cilia.

    1. Structural Biology and Molecular Biophysics
    Sebastian Jojoa-Cruz, Adrienne E Dubin ... Andrew B Ward
    Research Advance

    The dimeric two-pore OSCA/TMEM63 family has recently been identified as mechanically activated ion channels. Previously, based on the unique features of the structure of OSCA1.2, we postulated the potential involvement of several structural elements in sensing membrane tension (Jojoa-Cruz et al., 2018). Interestingly, while OSCA1, 2, and 3 clades are activated by membrane stretch in cell-attached patches (i.e. they are stretch-activated channels), they differ in their ability to transduce membrane deformation induced by a blunt probe (poking). Here, in an effort to understand the domains contributing to mechanical signal transduction, we used cryo-electron microscopy to solve the structure of Arabidopsis thaliana (At) OSCA3.1, which, unlike AtOSCA1.2, only produced stretch- but not poke-activated currents in our initial characterization (Murthy et al., 2018). Mutagenesis and electrophysiological assessment of conserved and divergent putative mechanosensitive features of OSCA1.2 reveal a selective disruption of the macroscopic currents elicited by poking without considerable effects on stretch-activated currents (SAC). Our results support the involvement of the amphipathic helix and lipid-interacting residues in the membrane fenestration in the response to poking. Our findings position these two structural elements as potential sources of functional diversity within the family.