The subiculum is a patchwork of discrete subregions

  1. Mark S Cembrowski  Is a corresponding author
  2. Lihua Wang
  3. Andrew L Lemire
  4. Monique Copeland
  5. Salvatore F DiLisio
  6. Jody Clements
  7. Nelson Spruston
  1. Janelia Research Campus, Howard Hughes Medical Institute, United States

Abstract

In the hippocampus, the classical pyramidal cell type of the subiculum acts as a primary output, conveying hippocampal signals to a diverse suite of downstream regions. Accumulating evidence suggests that the subiculum pyramidal cell population may actually be comprised of discrete subclasses. Here, we investigated the extent and organizational principles governing pyramidal cell heterogeneity throughout the mouse subiculum. Using single-cell RNA-seq, we find that the subiculum pyramidal cell population can be deconstructed into eight separable subclasses. These subclasses were mapped onto abutting spatial domains, ultimately producing a complex laminar and columnar organization with heterogeneity across classical dorsal-ventral, proximal-distal, and superficial-deep axes. We further show that these transcriptomically defined subclasses correspond to differential protein products and can be associated with specific projection targets. This work deconstructs the complex landscape of subiculum pyramidal cells into spatially segregated subclasses that may be observed, controlled, and interpreted in future experiments.

Data availability

Raw and processed scRNA-seq datasets have been deposited in the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus under GEO: GSE113069.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Mark S Cembrowski

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    For correspondence
    cembrowskim@janelia.hhmi.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8275-7362
  2. Lihua Wang

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Andrew L Lemire

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Monique Copeland

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Salvatore F DiLisio

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jody Clements

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Nelson Spruston

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3118-1636

Funding

Howard Hughes Medical Institute

  • Mark S Cembrowski
  • Lihua Wang
  • Andrew L Lemire
  • Monique Copeland
  • Salvatore F DiLisio
  • Jody Clements
  • Nelson Spruston

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Experimental procedures were approved by the Institutional Animal Care and Use Committee at the Janelia Research Campus.(protocols 14-118 and 17-159).

Copyright

© 2018, Cembrowski et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,496
    views
  • 983
    downloads
  • 92
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mark S Cembrowski
  2. Lihua Wang
  3. Andrew L Lemire
  4. Monique Copeland
  5. Salvatore F DiLisio
  6. Jody Clements
  7. Nelson Spruston
(2018)
The subiculum is a patchwork of discrete subregions
eLife 7:e37701.
https://doi.org/10.7554/eLife.37701

Share this article

https://doi.org/10.7554/eLife.37701