Effects of spinal cord stimulation on postural control in Parkinson's disease patients with freezing of gait
Abstract
Freezing of gait (FoG) in Parkinson's disease (PD) is an incapacitating transient phenomenon, followed by continuous postural disorders. Spinal cord stimulation (SCS) is a promising intervention for FoG in patients with PD, however its effects on distinct domains of postural control is not well known. The aim of this study is to assess the effects of SCS on FoG and distinct domains of postural control. Four patients with FoG were implanted with SCS systems in the upper thoracic spine. Anticipatory postural adjustment (APA), reactive postural responses, gait and FoG were biomechanically assessed. In general, the results showed that SCS improved FoG and APA. However, SCS failed to improve reactive postural responses. SCS seems to influence cortical motor circuits, involving the supplementary motor area. On the other hand, reactive posture control to external perturbation that mainly relies on neuronal circuitries involving the brainstem and spinal cord, is less influenced by SCS.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1 and 2.
Article and author information
Author details
Funding
Hospital das Clinicas, University of São Paulo Medical School
- Erich Talamoni Fonoff
Brazilian Council of Science and Technology
- Luis Augusto Teixeira
São Paulo Research Foundation
- Luis Augusto Teixeira
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: The study was approved by the department review board and in the ethics committee atHospital das Clinicas of University of São Paulo and registered in the national clinicalresearch database (CAPPESQ-HCFMUSP #12690213.0.0000.0068), which requires allparticipants to be previously instructed about the procedures and to give written informedconsent prior to study inclusion. Patients included in the present study participated in theclinical trial also registered in the clinicaltrials.gov (#NCT02388204). All experiments wereperformed in accordance with the Declaration of Helsinki
Reviewing Editor
- Amol Yadav, Duke University
Version history
- Received: April 19, 2018
- Accepted: July 28, 2018
- Accepted Manuscript published: August 2, 2018 (version 1)
- Version of Record published: August 14, 2018 (version 2)
Copyright
© 2018, de Lima-Pardini et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,374
- Page views
-
- 416
- Downloads
-
- 37
- Citations
Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Postsynaptic mitochondria are critical for the development, plasticity, and maintenance of synaptic inputs. However, their relationship to synaptic structure and functional activity is unknown. We examined a correlative dataset from ferret visual cortex with in vivo two-photon calcium imaging of dendritic spines during visual stimulation and electron microscopy reconstructions of spine ultrastructure, investigating mitochondrial abundance near functionally and structurally characterized spines. Surprisingly, we found no correlation to structural measures of synaptic strength. Instead, we found that mitochondria are positioned near spines with orientation preferences that are dissimilar to the somatic preference. Additionally, we found that mitochondria are positioned near groups of spines with heterogeneous orientation preferences. For a subset of spines with a mitochondrion in the head or neck, synapses were larger and exhibited greater selectivity to visual stimuli than those without a mitochondrion. Our data suggest mitochondria are not necessarily positioned to support the energy needs of strong spines, but rather support the structurally and functionally diverse inputs innervating the basal dendrites of cortical neurons.
-
- Neuroscience
Several discrete groups of feeding-regulated neurons in the nucleus of the solitary tract (nucleus tractus solitarius; NTS) suppress food intake, including avoidance-promoting neurons that express Cck (NTSCck cells) and distinct Lepr- and Calcr-expressing neurons (NTSLepr and NTSCalcr cells, respectively) that suppress food intake without promoting avoidance. To test potential synergies among these cell groups we manipulated multiple NTS cell populations simultaneously. We found that activating multiple sets of NTS neurons (e.g., NTSLepr plus NTSCalcr (NTSLC), or NTSLC plus NTSCck (NTSLCK)) suppressed feeding more robustly than activating single populations. While activating groups of cells that include NTSCck neurons promoted conditioned taste avoidance (CTA), NTSLC activation produced no CTA despite abrogating feeding. Thus, the ability to promote CTA formation represents a dominant effect but activating multiple non-aversive populations augments the suppression of food intake without provoking avoidance. Furthermore, silencing multiple NTS neuron groups augmented food intake and body weight to a greater extent than silencing single populations, consistent with the notion that each of these NTS neuron populations plays crucial and cumulative roles in the control of energy balance. We found that silencing NTSLCK neurons failed to blunt the weight-loss response to vertical sleeve gastrectomy (VSG) and that feeding activated many non-NTSLCK neurons, however, suggesting that as-yet undefined NTS cell types must make additional contributions to the restraint of feeding.