Parvovirus Minute Virus of Mice Interacts with Sites of Cellular DNA Damage to Establish and Amplify its Lytic Infection
Abstract
We have developed a generally adaptable, novel high-throughput Viral Chromosome Conformation Capture assay (V3C-seq) for use in trans that allows genome-wide identification of the direct interactions of a lytic virus genome with distinct regions of the cellular chromosome. Upon infection, we found that the parvovirus Minute Virus of Mice (MVM) genome initially associated with sites of cellular DNA damage that in mock-infected cells also exhibited DNA damage as cells progressed through S-phase. As infection proceeded, new DNA damage sites were induced, and virus subsequently also associated with these. Sites of association identified biochemically were confirmed microscopically and MVM could be targeted specifically to artificially induced sites of DNA damage. Thus, MVM established replication at cellular DNA damage sites, which provide replication and expression machinery, and as cellular DNA damage accrued, virus spread additionally to newly damaged sites to amplify infection. MVM-associated sites overlap significantly with previously identified topologically-associated domains (TADs).
Data availability
Sequencing data have been deposited in GEO under accession codes GSE81295 and GSE112957. Reviewers may use the following private token to access the data while it is in private status is: srufuwisdhiplgf.
-
Parvovirus Minute Virus of Mice Localizes to Sites of Cellular DNA Damage to Establish and Amplify its Lytic InfectionPublicly available at the NCBI Gene Expression Omnibus (accession no: GSE112957).
-
Genome-wide mapping of early replication fragile sites (ERFS)Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE43504).
-
A three-dimensional map of the human genome at kilobase resolution reveals prinicples of chromatin loopingPublicly available at the NCBI Gene Expression Omnibus (accession no: GSE63525).
-
Genome-wide incorporation dynamics reveal distinct categories of turnover for the histone variant H3.3Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE51505).
-
Buffer composition affects ribosome footprint precision in Arabidopsis root and shootPublicly available at the NCBI Gene Expression Omnibus (accession no: GSE81295).
Article and author information
Author details
Funding
National Institute of Allergy and Infectious Diseases (AI046458)
- David J Pintel
National Institute of Allergy and Infectious Diseases (AI131468)
- Kinjal Majumder
National Institute of Allergy and Infectious Diseases (AI116595)
- David J Pintel
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- David M Knipe, Harvard Medical School, United States
Publication history
- Received: April 21, 2018
- Accepted: July 19, 2018
- Accepted Manuscript published: July 20, 2018 (version 1)
- Version of Record published: August 16, 2018 (version 2)
Copyright
© 2018, Majumder et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,932
- Page views
-
- 234
- Downloads
-
- 14
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Microbiology and Infectious Disease
Malaria is caused by infection of the erythrocytes by the parasites Plasmodium. Inside the erythrocytes, the parasites multiply via schizogony, an unconventional cell division mode. The Inner Membrane Complex (IMC), an organelle located beneath the parasite plasma membrane, serving as the platform for protein anchorage, is essential for schizogony. So far, complete repertoire of IMC proteins and their localization determinants remain unclear. Here we used biotin ligase (TurboID)-based proximity labelling to compile the proteome of the schizont IMC of rodent malaria parasite Plasmodium yoelii. In total, 300 TurboID-interacting proteins were identified. 18 of 21 selected candidates were confirmed to localize in the IMC, indicating good reliability. In light of the existing palmitome of Plasmodium falciparum, 83 proteins of the P. yoelii IMC proteome are potentially palmitoylated. We further identified DHHC2 as the major resident palmitoyl-acyl-transferase of the IMC. Depletion of DHHC2 led to defective schizont segmentation and growth arrest both in vitro and in vivo. DHHC2 was found to palmitoylate two critical IMC proteins CDPK1 and GAP45 for their IMC localization. In summary, this study reports an inventory of new IMC proteins and demonstrates a central role of DHHC2 in governing IMC localization of proteins during the schizont development.
-
- Microbiology and Infectious Disease
Most rapid diagnostic tests for Plasmodium falciparum malaria target the Histidine-Rich Proteins 2 and 3 (HRP2 and HRP3). Deletions of the hrp2 and hrp3 genes result in false-negative tests and are a threat for malaria control. A novel assay for molecular surveillance of hrp2/hrp3 deletions was developed based on droplet digital PCR (ddPCR). The assay quantifies hrp2, hrp3, and a control gene with very high accuracy. The theoretical limit of detection was 0.33 parasites/µl. The deletion was reliably detected in mixed infections with wild-type and hrp2-deleted parasites at a density of >100 parasites/reaction. For a side-by-side comparison with the conventional nested PCR (nPCR) assay, 248 samples were screened in triplicate by ddPCR and nPCR. No deletions were observed by ddPCR, while by nPCR hrp2 deletion was observed in 8% of samples. The ddPCR assay was applied to screen 830 samples from Kenya, Zanzibar/Tanzania, Ghana, Ethiopia, Brazil, and Ecuador. Pronounced differences in the prevalence of deletions were observed among sites, with more hrp3 than hrp2 deletions. In conclusion, the novel ddPCR assay minimizes the risk of false-negative results (i.e., hrp2 deletion observed when the sample is wild type), increases sensitivity, and greatly reduces the number of reactions that need to be run.