Parvovirus Minute Virus of Mice Interacts with Sites of Cellular DNA Damage to Establish and Amplify its Lytic Infection

  1. Kinjal Majumder  Is a corresponding author
  2. Juexin Wang
  3. Maria Boftsi
  4. Matthew S Fuller
  5. Jordan E Rede
  6. Trupti Joshi  Is a corresponding author
  7. David J Pintel  Is a corresponding author
  1. University of Missouri-Columbia, United States
  2. Ultragenyx Pharmaceutical, United States

Abstract

We have developed a generally adaptable, novel high-throughput Viral Chromosome Conformation Capture assay (V3C-seq) for use in trans that allows genome-wide identification of the direct interactions of a lytic virus genome with distinct regions of the cellular chromosome. Upon infection, we found that the parvovirus Minute Virus of Mice (MVM) genome initially associated with sites of cellular DNA damage that in mock-infected cells also exhibited DNA damage as cells progressed through S-phase. As infection proceeded, new DNA damage sites were induced, and virus subsequently also associated with these. Sites of association identified biochemically were confirmed microscopically and MVM could be targeted specifically to artificially induced sites of DNA damage. Thus, MVM established replication at cellular DNA damage sites, which provide replication and expression machinery, and as cellular DNA damage accrued, virus spread additionally to newly damaged sites to amplify infection. MVM-associated sites overlap significantly with previously identified topologically-associated domains (TADs).

Data availability

Sequencing data have been deposited in GEO under accession codes GSE81295 and GSE112957. Reviewers may use the following private token to access the data while it is in private status is: srufuwisdhiplgf.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Kinjal Majumder

    Department of Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, United States
    For correspondence
    km3k5@health.missouri.edu
    Competing interests
    No competing interests declared.
  2. Juexin Wang

    Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, Columbia, United States
    Competing interests
    No competing interests declared.
  3. Maria Boftsi

    Pathobiology Area Graduate Program, University of Missouri-Columbia, Columbia, United States
    Competing interests
    No competing interests declared.
  4. Matthew S Fuller

    Ultragenyx Pharmaceutical, Cambridge, United States
    Competing interests
    Matthew S Fuller, is employed by Ultragenyx Pharmaceutical. There are no other competing interests to declare..
  5. Jordan E Rede

    Department of Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, United States
    Competing interests
    No competing interests declared.
  6. Trupti Joshi

    Department of Health Management and Informatics, University of Missouri-Columbia, Columbia, United States
    For correspondence
    joshitr@health.missouri.edu
    Competing interests
    No competing interests declared.
  7. David J Pintel

    Department of Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, United States
    For correspondence
    pinteld@missouri.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9959-2848

Funding

National Institute of Allergy and Infectious Diseases (AI046458)

  • David J Pintel

National Institute of Allergy and Infectious Diseases (AI131468)

  • Kinjal Majumder

National Institute of Allergy and Infectious Diseases (AI116595)

  • David J Pintel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. David M Knipe, Harvard Medical School, United States

Version history

  1. Received: April 21, 2018
  2. Accepted: July 19, 2018
  3. Accepted Manuscript published: July 20, 2018 (version 1)
  4. Version of Record published: August 16, 2018 (version 2)

Copyright

© 2018, Majumder et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,450
    Page views
  • 305
    Downloads
  • 25
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kinjal Majumder
  2. Juexin Wang
  3. Maria Boftsi
  4. Matthew S Fuller
  5. Jordan E Rede
  6. Trupti Joshi
  7. David J Pintel
(2018)
Parvovirus Minute Virus of Mice Interacts with Sites of Cellular DNA Damage to Establish and Amplify its Lytic Infection
eLife 7:e37750.
https://doi.org/10.7554/eLife.37750

Share this article

https://doi.org/10.7554/eLife.37750

Further reading

    1. Microbiology and Infectious Disease
    2. Physics of Living Systems
    Ray Chang, Ari Davydov ... Manu Prakash
    Research Article

    Microsporidia are eukaryotic, obligate intracellular parasites that infect a wide range of hosts, leading to health and economic burdens worldwide. Microsporidia use an unusual invasion organelle called the polar tube (PT), which is ejected from a dormant spore at ultra-fast speeds, to infect host cells. The mechanics of PT ejection are impressive. Anncaliia algerae microsporidia spores (3–4 μm in size) shoot out a 100-nm-wide PT at a speed of 300 μm/s, creating a shear rate of 3000 s-1. The infectious cargo, which contains two nuclei, is shot through this narrow tube for a distance of ∼60–140 μm (Jaroenlak et al, 2020) and into the host cell. Considering the large hydraulic resistance in an extremely thin tube and the low-Reynolds-number nature of the process, it is not known how microsporidia can achieve this ultrafast event. In this study, we use Serial Block-Face Scanning Electron Microscopy to capture 3-dimensional snapshots of A. algerae spores in different states of the PT ejection process. Grounded in these data, we propose a theoretical framework starting with a systematic exploration of possible topological connectivity amongst organelles, and assess the energy requirements of the resulting models. We perform PT firing experiments in media of varying viscosity, and use the results to rank our proposed hypotheses based on their predicted energy requirement. We also present a possible mechanism for cargo translocation, and quantitatively compare our predictions to experimental observations. Our study provides a comprehensive biophysical analysis of the energy dissipation of microsporidian infection process and demonstrates the extreme limits of cellular hydraulics.

    1. Microbiology and Infectious Disease
    Hui Han, Rong-Hua Luo ... Cheng-Gang Zou
    Research Article

    Angiotensin-converting enzyme 2 (ACE2) is a major cell entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The induction of ACE2 expression may serve as a strategy by SARS-CoV-2 to facilitate its propagation. However, the regulatory mechanisms of ACE2 expression after viral infection remain largely unknown. Using 45 different luciferase reporters, the transcription factors SP1 and HNF4α were found to positively and negatively regulate ACE2 expression, respectively, at the transcriptional level in human lung epithelial cells (HPAEpiCs). SARS-CoV-2 infection increased the transcriptional activity of SP1 while inhibiting that of HNF4α. The PI3K/AKT signaling pathway, activated by SARS-CoV-2 infection, served as a crucial regulatory node, inducing ACE2 expression by enhancing SP1 phosphorylation—a marker of its activity—and reducing the nuclear localization of HNF4α. However, colchicine treatment inhibited the PI3K/AKT signaling pathway, thereby suppressing ACE2 expression. In Syrian hamsters (Mesocricetus auratus) infected with SARS-CoV-2, inhibition of SP1 by either mithramycin A or colchicine resulted in reduced viral replication and tissue injury. In summary, our study uncovers a novel function of SP1 in the regulation of ACE2 expression and identifies SP1 as a potential target to reduce SARS-CoV-2 infection.