Cumulative mitochondrial activity correlates with ototoxin susceptibility in zebrafish mechanosensory hair cells

Abstract

Mitochondria play a prominent role in mechanosensory hair cell damage and death. Although hair cells are thought to be energetically demanding cells, how mitochondria respond to these demands and how this might relate to cell death is largely unexplored. Using genetically encoded indicators, we found mitochondrial calcium flux and oxidation are regulated by mechanotransduction and demonstrate that hair cell activity has both acute and long-term consequences on mitochondrial function. We tested whether variation in mitochondrial activity reflected differences in vulnerability of hair cells to the toxic drug neomycin. We observed that susceptibility did not correspond to the acute level of mitochondrial activity but rather to the cumulative history of that activity.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Sarah B Pickett

    Department of Biological Structure, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Eric D Thomas

    Department of Biological Structure, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Joy Y Sebe

    Department of Biological Structure, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Tor Linbo

    Department of Biological Structure, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Robert Esterberg

    Department of Biological Structure, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Dale W Hailey

    Department of Biological Structure, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. David W Raible

    Department of Biological Structure, University of Washington, Seattle, United States
    For correspondence
    draible@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5342-5841

Funding

National Institute on Deafness and Other Communication Disorders (R01DC015783)

  • David W Raible

National Science Foundation (DGE-1256082)

  • Sarah B Pickett

National Institute on Deafness and Other Communication Disorders (T32DC536115)

  • Sarah B Pickett

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#2997-01) of the University of Washington.

Copyright

© 2018, Pickett et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,570
    views
  • 369
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sarah B Pickett
  2. Eric D Thomas
  3. Joy Y Sebe
  4. Tor Linbo
  5. Robert Esterberg
  6. Dale W Hailey
  7. David W Raible
(2018)
Cumulative mitochondrial activity correlates with ototoxin susceptibility in zebrafish mechanosensory hair cells
eLife 7:e38062.
https://doi.org/10.7554/eLife.38062

Share this article

https://doi.org/10.7554/eLife.38062

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bethany M Bartlett, Yatendra Kumar ... Wendy A Bickmore
    Research Article

    During oncogene-induced senescence there are striking changes in the organisation of heterochromatin in the nucleus. This is accompanied by activation of a pro-inflammatory gene expression programme - the senescence associated secretory phenotype (SASP) - driven by transcription factors such as NF-κB. The relationship between heterochromatin re-organisation and the SASP has been unclear. Here we show that TPR, a protein of the nuclear pore complex basket required for heterochromatin re-organisation during senescence, is also required for the very early activation of NF-κB signalling during the stress-response phase of oncogene-induced senescence. This is prior to activation of the SASP and occurs without affecting NF-κB nuclear import. We show that TPR is required for the activation of innate immune signalling at these early stages of senescence and we link this to the formation of heterochromatin-enriched cytoplasmic chromatin fragments thought to bleb off from the nuclear periphery. We show that HMGA1 is also required for cytoplasmic chromatin fragment formation. Together these data suggest that re-organisation of heterochromatin is involved in altered structural integrity of the nuclear periphery during senescence, and that this can lead to activation of cytoplasmic nucleic acid sensing, NF-κB signalling, and activation of the SASP.

    1. Cell Biology
    John H Day, Catherine M Della Santina ... Laurie A Boyer
    Tools and Resources

    Expansion microscopy (ExM) enables nanoscale imaging using a standard confocal microscope through the physical, isotropic expansion of fixed immunolabeled specimens. ExM is widely employed to image proteins, nucleic acids, and lipid membranes in single cells; however, current methods limit the number of samples that can be processed simultaneously. We developed High-throughput Expansion Microscopy (HiExM), a robust platform that enables expansion microscopy of cells cultured in a standard 96-well plate. Our method enables ~4.2 x expansion of cells within individual wells, across multiple wells, and between plates. We also demonstrate that HiExM can be combined with high-throughput confocal imaging platforms to greatly improve the ease and scalability of image acquisition. As an example, we analyzed the effects of doxorubicin, a known cardiotoxic agent, on human cardiomyocytes (CMs) as measured by the Hoechst signal across the nucleus. We show a dose-dependent effect on nuclear DNA that is not observed in unexpanded CMs, suggesting that HiExM improves the detection of cellular phenotypes in response to drug treatment. Our method broadens the application of ExM as a tool for scalable super-resolution imaging in biological research applications.