Dlk1-Dio3 locus-derived LncRNAs perpetuate postmitotic motor neuron cell fate and subtype identity
Abstract
The mammalian imprinted Dlk1-Dio3 locus produces multiple long non-coding RNAs (lncRNAs) from the maternally inherited allele, including Meg3 (i.e., Gtl2) in the mammalian genome. Although this locus has well-characterized functions in stem cell and tumor contexts, its role during neural development is unknown. By profiling cell types at each stage of embryonic stem cell derived motor neurons (ESC~MNs) that recapitulate spinal cord development, we uncovered that lncRNAs expressed from the Dlk1-Dio3 locus are predominantly and gradually enriched in rostral motor neurons (MNs). Mechanistically, Meg3 and other Dlk1-Dio3 locus-derived lncRNAs facilitate Ezh2/Jarid2 interactions. Loss of these lncRNAs compromises the H3K27me3 landscape, leading to aberrant expression of progenitor and caudal Hox genes in postmitotic MNs. Our data thus illustrate that these lncRNAs in the Dlk1-Dio3 locus, particularly Meg3, play a critical role in maintaining postmitotic MN cell fate by repressing progenitor genes and they shape MN subtype identity by regulating Hox genes.
Data availability
All microarray, RNA-seq, ChIP-seq data have been deposited in GEO under accession codes GSE114283, GSE114285 and GSE114228.
-
Genome-wide maps of H3K27me3 in chromatin state in embryonic stem cells differentiated motor neuronsPublicly available at the NCBI Gene Expression Omnibus (accession no: GSE114283).
-
Next Generation Sequencing Facilitates Quantitative Analysis of ES, pMN, MN, and IN TranscriptomesPublicly available at the NCBI Gene Expression Omnibus (accession no: GSE114285).
-
Transcriptome analysis of Meg3 KD and IG-DMR maternal deletion in ESC, pMN, and MNPublicly available at the NCBI Gene Expression Omnibus (accession no: GSE114228).
-
Induced V5-tagged Lhx3 (iLhx3-V5) in iNIL3-induced motor neurons (Day 4)Publicly available at the NCBI Gene Expression Omnibus (accession no: GSM782847).
-
Isl1/2 in iNIL3-induced motor neurons (Day 4)Publicly available at the NCBI Gene Expression Omnibus (accession no: GSM782848).
-
H3K4me3Publicly available at the NCBI Gene Expression Omnibus (accession no: GSM1468401).
-
H3K27ac_day6Publicly available at the NCBI Gene Expression Omnibus (accession no: GSM2098385).
-
ATAC_seq_day6Publicly available at the NCBI Gene Expression Omnibus (accession no: GSM2098391).
-
RAR_Day2+8hrsRAPublicly available at the NCBI Gene Expression Omnibus (accession no: GSM482750).
-
Pol2-S5P_Day2+8hPublicly available at the NCBI Gene Expression Omnibus (accession no: GSM981593).
-
ES-WTPublicly available at the NCBI Gene Expression Omnibus (accession no: GSM2420680).
-
AK4-WTPublicly available at the NCBI Gene Expression Omnibus (accession no: GSM2420683).
-
AK7-WTPublicly available at the NCBI Gene Expression Omnibus (accession no: GSM2420684).
Article and author information
Author details
Funding
Ministry of Science and Technology, Taiwan (RO1)
- Jun-An Chen
National Health Research Institutes (CDG)
- Jun-An Chen
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All of the live animals were kept in an SPF animal facility, approved and overseen by IACUC (12-07-389 ) Academia Sinica.
Copyright
© 2018, Yen et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 4,997
- views
-
- 593
- downloads
-
- 43
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Developmental Biology
Mutations in the well-known Myostatin (MSTN) produce a ‘double-muscle’ phenotype, which makes it commercially invaluable for improving livestock meat production and providing high-quality protein for humans. However, mutations at different loci of the MSTN often produce a variety of different phenotypes. In the current study, we increased the delivery ratio of Cas9 mRNA to sgRNA from the traditional 1:2 to 1:10, which improves the efficiency of the homozygous mutation of biallelic gene. Here, a MSTNDel73C mutation with FGF5 knockout sheep, in which the MSTN and FGF5 dual-gene biallelic homozygous mutations were produced via the deletion of 3-base pairs of AGC in the third exon of MSTN, resulting in cysteine-depleted at amino acid position 73, and the FGF5 double allele mutation led to inactivation of FGF5 gene. The MSTNDel73C mutation with FGF5 knockout sheep highlights a dominant ‘double-muscle’ phenotype, which can be stably inherited. Both F0 and F1 generation mutants highlight the excellent trait of high-yield meat with a smaller cross-sectional area and higher number of muscle fibers per unit area. Mechanistically, the MSTNDel73C mutation with FGF5 knockout mediated the activation of FOSL1 via the MEK-ERK-FOSL1 axis. The activated FOSL1 promotes skeletal muscle satellite cell proliferation and inhibits myogenic differentiation by inhibiting the expression of MyoD1, and resulting in smaller myotubes. In addition, activated ERK1/2 may inhibit the secondary fusion of myotubes by Ca2+-dependent CaMKII activation pathway, leading to myoblasts fusion to form smaller myotubes.