The chloroplast 2-cysteine peroxiredoxin functions as thioredoxin oxidase in redox regulation of chloroplast metabolism

7 figures, 9 tables and 2 additional files

Figures

Figure 1 with 1 supplement
Chlorophyll-a fluorescence kinetics of 4d old wildtype, 2cysprxAB and cyclophilin 20–3 mutants.

Seeds were placed on phytogel-solidified half strength Murashige-Skoog medium with or without 0.5% sucrose, stratified for 2 d and then grown in a growth chamber with 8 hr light, 16 hr dark at 80 …

https://doi.org/10.7554/eLife.38194.002
Figure 1—figure supplement 1
Chlorophyll-fluorescence kinetics of 7 d old wildtype, 2cysprxAB and cyclophilin 20–3 mutants.

Seeds were placed on phytogel-solidified half strength Murashige-Skoog medium with or without 0.5% sucrose, stratified for 2 d and then grown in a growth chamber with 16 hr light, 8 hr dark at 80 …

https://doi.org/10.7554/eLife.38194.003
Figure 2 with 1 supplement
Inhibition of reductively activated FBPase by oxidized 2-CysPrxA.

(A) Isolated stroma was treated with 1 mM dithiothreitol (DTT) plus/minus Trx for pre-activation and then added to the FBPase activity test with a final DTT concentration of 500 µM. Test compounds …

https://doi.org/10.7554/eLife.38194.004
Figure 2—source data 1

Values from the FBPase activity tests shown in Figure 2B and D.

https://doi.org/10.7554/eLife.38194.006
Figure 2—figure supplement 1
Thioredoxin-specificity of inactivation of FBPase by oxidized 2-CysPrx.

Stroma was preactivated in the presence of 1 mM DTT. After dilution into FBPase assay buffer, various recombinant thioredoxins were added at 5 µM concentration and the reactions was started by …

https://doi.org/10.7554/eLife.38194.005
Figure 3 with 1 supplement
Dependency of FBPase inactivation on Trx-f1 concentration and functionality of the 2-CysPrxA, and mathematical simulation of the in vitro assay by kinetic modeling.

(A) Dependency of FBPase activity on Trx-f1 concentration. At t = 0 min, Trx-f1 was added at concentration between 0 and 5 µM. The FBPase activity test was performed as in Figure 2A. Data are means ±…

https://doi.org/10.7554/eLife.38194.007
Figure 3—source data 1

FBPase activity in the presence of different Trx-f1 concentrations.

https://doi.org/10.7554/eLife.38194.009
Figure 3—figure supplement 1
Mathematical modeling and simulation of FBPase inactivation by 2-CysPrxox in the enzyme assay.

The FBPase amount in stroma equivalent to 100 µg protein was estimated to 4.7 nM based on the mass spectrometric data of Peltier et al. (2006). Recombinant Trx-f1 was adjusted to 5 µM. 2-CysPrxox (5 …

https://doi.org/10.7554/eLife.38194.008
Trx-dependent inactivation of MDH by oxidized 2-CysPrx.

(A) Spectrophotometric recording of MDH activity after addition of 2 mM oxaloacetic acid (OAA). The background was determined without addition of OAA. Addition of 10 µM Trx-m1 did not alter the …

https://doi.org/10.7554/eLife.38194.010
Figure 4—source data 1

Values of the MDH activity test shown in Figure 4B.

https://doi.org/10.7554/eLife.38194.011
Figure 5 with 3 supplements
Inhibition of NADPH-MDH and ribulose-5-phosphate kinase in leaves upon light-dark transitions, and non-soluble sugar contents in WT and 2cysprxAB during a 24 hr day-night cycle.

(A) MDH activity during a light-dark transition: WT and 2cysprxAB plants were exposed to 650 µmol quanta m−2 s−1 for 30 min and then darkened at t = 0 s. Proteins were rapidly extracted prior to …

https://doi.org/10.7554/eLife.38194.012
Figure 5—source data 1

Altered MDH and PRK activities in 2cysprxAB mutants after light-dark transitions.

https://doi.org/10.7554/eLife.38194.016
Figure 5—figure supplement 1
Genotyping and protein detection in 2cysprxAB and two independent 2-CysPrxA-complemented lines (C1 and C2).

(A) PCR-based genotyping: Used primers are found in Supplementary file 1. The target sequence confirming T-DNA insertion in 2cysprxA had a length of 479 bp (At2-CysPrxgenR + GK RBfor), the PCR …

https://doi.org/10.7554/eLife.38194.013
Figure 5—figure supplement 2
PRK activity in the complemented lines C1 and C2 in comparison to WT and 2cysprxAB.

PRK activity was determined 300 s after transfer of light-exposed plants to darkness. PRK was efficiently inhibited in WT and both complemented lines C1 and C2 after darkening, but was still highly …

https://doi.org/10.7554/eLife.38194.014
Figure 5—figure supplement 3
Simulation of redox change of FBPase upon darkening.

(A) The model assumes reduction of ferredoxin (Fd) by the photosynthetic electron transport chain in the light during the first 200 s. This process also reduces Fd-dependent thioredoxin reductase. …

https://doi.org/10.7554/eLife.38194.015
Figure 6 with 3 supplements
Reversal of light-induced changes of photosynthetic parameters.

(A) WT and (B) 2cysprxAB plants were acclimated to darkness. Fluorescence and NIR absorption changes were recorded with the NIR-KLAS-100. Chlorophyll-a fluorescence from photosystem II (PSII, violet …

https://doi.org/10.7554/eLife.38194.017
Figure 6—figure supplement 1
Fluorescence and NIR absorption changes of the complemented lines C1 and C2 measured with the NIR-KLAS-100.

For comparison with WT and 2cysprxAB see Figure 6. Chlorophyll-a fluorescence from photosystem II (PSII, violet trace) (left ordinate) and redox changes from photosystem I (PSI, blue), plastocyanin …

https://doi.org/10.7554/eLife.38194.018
Figure 6—figure supplement 2
Half-life time of Fd reoxidation in WT and 2-cysprxAB as well as 2cysprxAB complemented with 2-CysPrxA (C1 and C2).

Readings were documented from leaves of n = 5 different dark-adapted plants. Ferredoxin reoxidation was measured with the Walz NIR-KLAS-100 after 1.5 s of illumination. Means ± SD were evaluated …

https://doi.org/10.7554/eLife.38194.019
Figure 6—figure supplement 3
Exemplary immunoblot with leaf extracts using anti 2-CysPrx antiserum.

Leaves were illuminated at 650 µmol quanta m−2 s−1 for 30 min followed by darkening as indicated. Reduced thiols were blocked by adding 100 mM N-ethylmaleimide in extraction buffer. Plant extract (2 …

https://doi.org/10.7554/eLife.38194.020
Growth phenotype of WT and 2cysprxAB in different light regimes.

WT (upper image) and 2cysprxAB (lower image) were grown in five different light regimes as indicated, namely from left to right: (i) fluctuating light (FL) for 3 weeks consisting of 80 s/10 s L/H …

https://doi.org/10.7554/eLife.38194.021
Figure 7—source data 1

Fresh weight for two fluctuating light schemes (40 s L/5 s H; 80 s L/10 s H) including complementation lines.

https://doi.org/10.7554/eLife.38194.022

Tables

Table 1
Effect of fluctuating light on rosette fresh weight of 2cysprxAB and WT.

Plants were grown in fluctuating light for 3 weeks. The program established the following cycles: 40 s L/5 s H, 80 s L/10 s H, 120 s L/15 s H; H corresponds to 800 µmol quanta m−2 s- 1, L to 22 µmol …

https://doi.org/10.7554/eLife.38194.023
Light cycleWT [mg]2cysprxAB [mg]Ratio WT/2cysprxAB
constant372 ± 74117 ± 203.19
40 s/5 s26 ± 522 ± 41.21
80 s/10 s21 ± 624 ± 50.87
120 s/15 s14 ± 311 ± 21.34
Appendix 1—table 1
Values of variables used for modeling the enzyme assay.
https://doi.org/10.7554/eLife.38194.027
ComponentStart value [µM]Addition t = 100 [µM]Addition t = 200 [µM]
FBPaseox
FBPasered
0
4.70756e-3
0
0
0
0
Trxf1ox000
Trxf1red505
2-CysPrxox
2-CysPrxred
0
0
0
0
2.5–20
0
FBP06000
Fru-6-P000
Appendix 1—table 2
Parameters used for modeling the enzyme assay as a reference.
https://doi.org/10.7554/eLife.38194.028
ParameterValueReference/comment
k12.9616e-2 µM−1s−1Calculated from Collin et al. (2003)
k21.84e-3 µM−1 s−1Collin et al. (2003)
KM(FBP)0.028 µMPilkis et al., 1987
kcat_30.1 s−1Villadsen and Nielsen, 2001
Keq_10.5697calculated
Keq_20.3856calculated
FBPasetotal4.70756 µMcalculated
2-CysPrxtotal0–20 µMEnzyme test concentration
Trxf1total5 µMEnzyme test concentration
Appendix 1—table 3
Reaction equations describing the model of the enzyme test.
https://doi.org/10.7554/eLife.38194.029
Reaction numberReaction
 1Trxf1red+FBPaseoxAk1k1+BTrxf1ox+FBPasered
 2Trxf1red+2CysPrxoxAk2k2+BTrxf1ox+2CysPrxred
 3FBPFBPaseredF6P+Pi
Appendix 1—table 4
Rate expression for the three reactions of the enzyme test model.
https://doi.org/10.7554/eLife.38194.030
Reaction numberReaction
 1v1=k1([Trxf1red][FBPaseox][Trxf1ox][FBPasered]Keq_1)
 2v2=k2([Trxf1red[2CysPrxox][Trxf1ox][2CysPrxred]Keq_2)
 3v3=kcat3[FBPasered][FBP][FBP+KmFBP]v3=kcat3[FBPasered][FBP][FBP+KmFBP]v3=kcat3[FBPasered][FBP][FBP+KmFBP]
Appendix 2—table 1
Values of variables used for modeling the light-dark-transitions.
https://doi.org/10.7554/eLife.38194.032
componentstart value [µM]Reference/comment
FTRox0Assumption in light 100% reduced
FTRred4.7727calculated from Yoshida and Hisabori (2017)
Trxf1ox3.798e-120% oxidized
Trxf1red1.519280% reduced
FBPaseox
FBPasered
1.426528
5.706112
20% oxidized
80% reduced
Appendix 2—table 2
Parameters used for modeling the light-dark-transitions.
https://doi.org/10.7554/eLife.38194.033
parametervalueReference/comment
k17.7047e−2 µM−1µM−1s−1Fitted
k26.819e−2 µM−1s−1Fitted
k32.9616e−2 µM−1s−1Calculated from Collin et al. (2003)
k41.84e−3 µM−1s−1Collin et al. (2003)
Keq_Trxf1FBPase0.5697Calculated
Keq_Trxf12CP0.3856Calculated
Fdtotal69 µMcalculated from Peltier et al. (2006)
Fdred_fix34.5 µMEstimated (50% reduced)
FTRtotal4.7727 µMcalculated from Yoshida and Hisabori (2017)
Trxf1total1.899 µMcalculated from Peltier et al. (2006)
FBPasetotal7.13267 µMcalculated from Peltier et al. (2006)
2-CysPrxtotal63.3 µMCalculated from Peltier et al. (2006)
2-CysPrxred_fix21.522 µMCalculated
2-CysPrxox_fix41.778Calculated
Appendix 2—table 3
Reaction equation describing the model of the light-dark-transitions.
https://doi.org/10.7554/eLife.38194.034
reaction numberreaction
1Fdred+Fdred+FTRoxk1Fdox+Fdox+FTRred
2FTRred+Trxf1oxk2FTRox+Trxf1red
3Trxf1red+FBPaseoxAk3k3+BTrxf1ox+FBPasered
4Trxf1red+2CysPrxoxAk2k2+BTrxf1ox+2CysPrxred
Appendix 2—table 4
Rate expressions for the four reactions considered for the model of light-dark-transition .
https://doi.org/10.7554/eLife.38194.035
reaction numberReaction
1v1=k1[Fdred][Fdred][FTRox]
2v2=k2[FTRred[Trxf1ox]
3v3=k3([Trxf1red][FBPaseox][Trxf1ox][FBPasered]Keq_Trxf1FBPase)v3=k3([Trxf1red][FBPaseox][Trxf1ox][FBPasered]Keq_Trxf1FBPase)v3=k3([Trxf1red][FBPaseox][Trxf1ox][FBPasered]Keq_Trxf1FBPase)
4v4=k4([Trxf1red[2CysPrxox][Trxf1ox][2CysPrxred]Keq_Trxf12CP)

Additional files

Supplementary file 1

Primers used for cloning.

for: forward primer, rev: reverse primer.

https://doi.org/10.7554/eLife.38194.024
Transparent reporting form
https://doi.org/10.7554/eLife.38194.025

Download links