Concerted IL-25R and IL-4Rα signaling drive innate type 2 effector immunity for optimal helminth expulsion

  1. Katherine A Smith  Is a corresponding author
  2. Stephan Löser
  3. Fumi Varyani
  4. Yvonne Harcus
  5. Henry J McSorley
  6. Andrew NJ McKenzie
  7. Rick M Maizels  Is a corresponding author
  1. Cardiff University, United Kingdom
  2. University of Glasgow, United Kingdom
  3. University of Edinburgh, United Kingdom
  4. MRC Laboratory of Molecular Biology, United Kingdom

Abstract

Interleukin 25 (IL-25) is a major 'alarmin' cytokine, capable of initiating and amplifying the type 2 immune response to helminth parasites. However its role in the later effector phase of clearing chronic infection remains unclear. The helminth Heligmosomoides polygyrus establishes long-term infections in susceptible C57BL/6 mice, but is slowly expelled in BALB/c mice from day 14 onwards. We noted that IL-25R (Il17rb)-deficient BALB/c mice were unable to expel parasites despite type 2 immune activation comparable to the wild-type. We then established that in C57BL/6 mice, IL-25 adminstered late in infection (days 14-17) drove immunity. Moreover when IL-25 and IL-4 were delivered to Rag1-deficient mice, the combination resulted in near complete expulsion of the parasite, even following administration of an anti-CD90 antibody to deplete innate lymphoid cells (ILCs). Hence, effective anti-helminth immunity during chronic infection requires an innate effector cell population that is synergistically activated by the combination of IL-4Rα and IL-25R signaling.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Katherine A Smith

    Cardiff Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
    For correspondence
    SmithK28@Cardiff.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8150-5702
  2. Stephan Löser

    Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Fumi Varyani

    MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Yvonne Harcus

    MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Henry J McSorley

    MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Andrew NJ McKenzie

    Protein and Nucleic Acid Chemistry Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Rick M Maizels

    Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
    For correspondence
    rick.maizels@glasgow.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3216-1944

Funding

Wellcome (106122)

  • Rick M Maizels

Wellcome (90281)

  • Rick M Maizels

European Commission (657639)

  • Katherine A Smith

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Andrew J MacPherson, University of Bern, Switzerland

Ethics

Animal experimentation: All animal protocols adhered to the guidelines of the UK home office and complied with the Animals (Scientific Procedures) Act 1986. The protocols were approved by the Ethical Review Committees of the University of Edinburgh (UK Home Office Project number 60/4105) and the University of Glasgow (Project number 70/8384).

Version history

  1. Received: May 10, 2018
  2. Accepted: September 21, 2018
  3. Accepted Manuscript published: September 21, 2018 (version 1)
  4. Version of Record published: October 5, 2018 (version 2)

Copyright

© 2018, Smith et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,922
    views
  • 338
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Katherine A Smith
  2. Stephan Löser
  3. Fumi Varyani
  4. Yvonne Harcus
  5. Henry J McSorley
  6. Andrew NJ McKenzie
  7. Rick M Maizels
(2018)
Concerted IL-25R and IL-4Rα signaling drive innate type 2 effector immunity for optimal helminth expulsion
eLife 7:e38269.
https://doi.org/10.7554/eLife.38269

Share this article

https://doi.org/10.7554/eLife.38269

Further reading

    1. Immunology and Inflammation
    Zhixin Jing, Phillip Galbo ... David Fooksman
    Research Article

    Durable serological memory following vaccination is critically dependent on the production and survival of long-lived plasma cells (LLPCs). Yet, the factors that control LLPC specification and survival remain poorly resolved. Using intravital two-photon imaging, we find that in contrast to most plasma cells (PCs) in the bone marrow (BM), LLPCs are uniquely sessile and organized into clusters that are dependent on APRIL, an important survival factor. Using deep, bulk RNA sequencing, and surface protein flow-based phenotyping, we find that LLPCs express a unique transcriptome and phenotype compared to bulk PCs, fine-tuning expression of key cell surface molecules, CD93, CD81, CXCR4, CD326, CD44, and CD48, important for adhesion and homing. Conditional deletion of Cxcr4 in PCs following immunization leads to rapid mobilization from the BM, reduced survival of antigen-specific PCs, and ultimately accelerated decay of antibody titer. In naïve mice, the endogenous LLPCs BCR repertoire exhibits reduced diversity, reduced somatic mutations, and increased public clones and IgM isotypes, particularly in young mice, suggesting LLPC specification is non-random. As mice age, the BM PC compartment becomes enriched in LLPCs, which may outcompete and limit entry of new PCs into the LLPC niche and pool.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Ffion R Hammond, Amy Lewis ... Philip M Elks
    Research Article

    Tuberculosis is a major global health problem and is one of the top 10 causes of death worldwide. There is a pressing need for new treatments that circumvent emerging antibiotic resistance. Mycobacterium tuberculosis parasitises macrophages, reprogramming them to establish a niche in which to proliferate, therefore macrophage manipulation is a potential host-directed therapy if druggable molecular targets could be identified. The pseudokinase Tribbles1 (Trib1) regulates multiple innate immune processes and inflammatory profiles making it a potential drug target in infections. Trib1 controls macrophage function, cytokine production, and macrophage polarisation. Despite wide-ranging effects on leukocyte biology, data exploring the roles of Tribbles in infection in vivo are limited. Here, we identify that human Tribbles1 is expressed in monocytes and is upregulated at the transcript level after stimulation with mycobacterial antigen. To investigate the mechanistic roles of Tribbles in the host response to mycobacteria in vivo, we used a zebrafish Mycobacterium marinum (Mm) infection tuberculosis model. Zebrafish Tribbles family members were characterised and shown to have substantial mRNA and protein sequence homology to their human orthologues. trib1 overexpression was host-protective against Mm infection, reducing burden by approximately 50%. Conversely, trib1 knockdown/knockout exhibited increased infection. Mechanistically, trib1 overexpression significantly increased the levels of proinflammatory factors il-1β and nitric oxide. The host-protective effect of trib1 was found to be dependent on the E3 ubiquitin kinase Cop1. These findings highlight the importance of Trib1 and Cop1 as immune regulators during infection in vivo and suggest that enhancing macrophage TRIB1 levels may provide a tractable therapeutic intervention to improve bacterial infection outcomes in tuberculosis.