Functional instability allows access to DNA in longer Transcription Activator-Like Effector (TALE) arrays

  1. Kathryn Geiger-Schuller
  2. Jaba Mitra
  3. Taekjip Ha
  4. Doug Barrick  Is a corresponding author
  1. Johns Hopkins University, United States
  2. University of Illinois Urbana-Champaign, United States

Abstract

Transcription activator-like effectors (TALEs) bind DNA through an array of tandem 34-residue repeats. How TALE repeat domains wrap around DNA, often extending more than 1.5 helical turns, without using external energy is not well understood. Here, we examine the kinetics of DNA binding of TALE arrays with varying numbers of identical repeats. Single molecule fluorescence analysis and deterministic modeling reveal conformational heterogeneity in both the free- and DNA-bound TALE arrays. Our findings, combined with previously identified partly folded states, indicate a TALE instability that is functionally important for DNA binding. For TALEs forming less than one superhelical turn around DNA, partly folded states inhibit DNA binding. In contrast, for TALEs forming more than one turn, partly folded states facilitate DNA binding, demonstrating a mode of 'functional instability' that facilitates macromolecular assembly. Increasing repeat number slows down interconversion between the various DNA-free and DNA-bound states.

Data availability

Source data files have been provided for Figure 3. Source code and data files related to Figure 6 are publicly available and can be found at https://github.com/kgeigers/DeMASK.

The following data sets were generated

Article and author information

Author details

  1. Kathryn Geiger-Schuller

    Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6705-0681
  2. Jaba Mitra

    Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, United States
    Competing interests
    No competing interests declared.
  3. Taekjip Ha

    Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, United States
    Competing interests
    Taekjip Ha, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2195-6258
  4. Doug Barrick

    Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, United States
    For correspondence
    barrick@jhu.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7291-1389

Funding

National Institute of General Medical Sciences (T32-GM008403)

  • Kathryn Geiger-Schuller

National Institute of General Medical Sciences (R01-GM068462)

  • Doug Barrick

National Institute of General Medical Sciences (GM1129659)

  • Taekjip Ha

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Geiger-Schuller et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,764
    views
  • 283
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kathryn Geiger-Schuller
  2. Jaba Mitra
  3. Taekjip Ha
  4. Doug Barrick
(2019)
Functional instability allows access to DNA in longer Transcription Activator-Like Effector (TALE) arrays
eLife 8:e38298.
https://doi.org/10.7554/eLife.38298

Share this article

https://doi.org/10.7554/eLife.38298

Further reading

    1. Biochemistry and Chemical Biology
    Shu-Ting Zhang, Shi-Kai Deng ... Ning-Yi Zhou
    Research Article

    1-Naphthylamine (1NA), which is harmful to human and aquatic animals, has been used widely in the manufacturing of dyes, pesticides, and rubber antioxidants. Nevertheless, little is known about its environmental behavior and no bacteria have been reported to use it as the growth substrate. Herein, we describe a pathway for 1NA degradation in the isolate Pseudomonas sp. strain JS3066, determine the structure and mechanism of the enzyme NpaA1 that catalyzes the initial reaction, and reveal how the pathway evolved. From genetic and enzymatic analysis, a five gene-cluster encoding a dioxygenase system was determined to be responsible for the initial steps in 1NA degradation through glutamylation of 1NA. The γ-glutamylated 1NA was subsequently oxidized to 1,2-dihydroxynaphthalene which was further degraded by the well-established pathway of naphthalene degradation via catechol. A glutamine synthetase-like (GS-like) enzyme (NpaA1) initiates 1NA glutamylation, and this enzyme exhibits a broad substrate selectivity toward a variety of anilines and naphthylamine derivatives. Structural analysis revealed that the aromatic residues in the 1NA entry tunnel and the V201 site in the large substrate-binding pocket significantly influence NpaA1’s substrate preferences. The findings enhance understanding of degrading polycyclic aromatic amines, and will also enable the application of bioremediation at naphthylamine contaminated sites.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Qiong He, Miao-Miao Zhao ... Jin-Kui Yang
    Research Article

    Diabetes, a prevalent chronic condition, significantly increases the risk of mortality from COVID-19, yet the underlying mechanisms remain elusive. Emerging evidence implicates Cathepsin L (CTSL) in diabetic complications, including nephropathy and retinopathy. Our previous research identified CTSL as a pivotal protease promoting SARS-CoV-2 infection. Here, we demonstrate elevated blood CTSL levels in individuals with diabetes, facilitating SARS-CoV-2 infection. Chronic hyperglycemia correlates positively with CTSL concentration and activity in diabetic patients, while acute hyperglycemia augments CTSL activity in healthy individuals. In vitro studies reveal high glucose, but not insulin, promotes SARS-CoV-2 infection in wild-type cells, with CTSL knockout cells displaying reduced susceptibility. Utilizing lung tissue samples from diabetic and non-diabetic patients, alongside Leprdb/dbmice and Leprdb/+mice, we illustrate increased CTSL activity in both humans and mice under diabetic conditions. Mechanistically, high glucose levels promote CTSL maturation and translocation from the endoplasmic reticulum (ER) to the lysosome via the ER-Golgi-lysosome axis. Our findings underscore the pivotal role of hyperglycemia-induced CTSL maturation in diabetic comorbidities and complications.