Functional instability allows access to DNA in longer Transcription Activator-Like Effector (TALE) arrays

  1. Kathryn Geiger-Schuller
  2. Jaba Mitra
  3. Taekjip Ha
  4. Doug Barrick  Is a corresponding author
  1. Johns Hopkins University, United States
  2. University of Illinois Urbana-Champaign, United States

Abstract

Transcription activator-like effectors (TALEs) bind DNA through an array of tandem 34-residue repeats. How TALE repeat domains wrap around DNA, often extending more than 1.5 helical turns, without using external energy is not well understood. Here, we examine the kinetics of DNA binding of TALE arrays with varying numbers of identical repeats. Single molecule fluorescence analysis and deterministic modeling reveal conformational heterogeneity in both the free- and DNA-bound TALE arrays. Our findings, combined with previously identified partly folded states, indicate a TALE instability that is functionally important for DNA binding. For TALEs forming less than one superhelical turn around DNA, partly folded states inhibit DNA binding. In contrast, for TALEs forming more than one turn, partly folded states facilitate DNA binding, demonstrating a mode of 'functional instability' that facilitates macromolecular assembly. Increasing repeat number slows down interconversion between the various DNA-free and DNA-bound states.

Data availability

Source data files have been provided for Figure 3. Source code and data files related to Figure 6 are publicly available and can be found at https://github.com/kgeigers/DeMASK.

The following data sets were generated

Article and author information

Author details

  1. Kathryn Geiger-Schuller

    Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6705-0681
  2. Jaba Mitra

    Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, United States
    Competing interests
    No competing interests declared.
  3. Taekjip Ha

    Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, United States
    Competing interests
    Taekjip Ha, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2195-6258
  4. Doug Barrick

    Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, United States
    For correspondence
    barrick@jhu.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7291-1389

Funding

National Institute of General Medical Sciences (T32-GM008403)

  • Kathryn Geiger-Schuller

National Institute of General Medical Sciences (R01-GM068462)

  • Doug Barrick

National Institute of General Medical Sciences (GM1129659)

  • Taekjip Ha

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Antoine M van Oijen, University of Wollongong, Australia

Version history

  1. Received: May 11, 2018
  2. Accepted: February 27, 2019
  3. Accepted Manuscript published: February 27, 2019 (version 1)
  4. Version of Record published: April 12, 2019 (version 2)

Copyright

© 2019, Geiger-Schuller et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,734
    views
  • 280
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kathryn Geiger-Schuller
  2. Jaba Mitra
  3. Taekjip Ha
  4. Doug Barrick
(2019)
Functional instability allows access to DNA in longer Transcription Activator-Like Effector (TALE) arrays
eLife 8:e38298.
https://doi.org/10.7554/eLife.38298

Share this article

https://doi.org/10.7554/eLife.38298

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Isabelle Petit-Hartlein, Annelise Vermot ... Franck Fieschi
    Research Article

    NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2’s requirement for activation.