Fizzy-related dictates a cell cycle switch during organ repair and tissue growth responses in the Drosophila hindgut

  1. Erez Cohen
  2. Scott R Allen
  3. Jessica K Sawyer
  4. Donald T Fox  Is a corresponding author
  1. Duke University, United States

Abstract

Ploidy-increasing cell cycles drive tissue growth in many developing organs. Such cycles, including endocycles, are increasingly appreciated to drive tissue growth following injury or activated growth signaling in mature organs. In these organs, the regulation and distinct roles of different cell cycles remains unclear. Here, we uncover a programmed switch between cell cycles in the Drosophila hindgut pylorus. Using an acute injury model, we identify mitosis as the response in larval pyloric cells, whereas endocycles occur in adult pyloric cells. By developing a novel genetic method, DEMISE (Dual-Expression-Method-for-Induced-Site-specific-Eradication), we show the cell cycle regulator Fizzy-related dictates the decision between mitosis and endocycles. After injury, both cycles accurately restore tissue mass and genome content. However, in response to sustained growth signaling, only endocycles preserve epithelial architecture. Our data reveal distinct cell cycle programming in response to similar stimuli in mature vs. developmental states and reveal a tissue-protective role of endocycles.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Erez Cohen

    Department of Cell Biology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Scott R Allen

    Department of Cell Biology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4809-0493
  3. Jessica K Sawyer

    Department of Pharmacology and Cancer Biology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Donald T Fox

    Department of Cell Biology, Duke University, Durham, United States
    For correspondence
    don.fox@duke.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0436-179X

Funding

National Institutes of Health (GM118447)

  • Donald T Fox

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Bruce Edgar, University of Utah, United States

Publication history

  1. Received: May 12, 2018
  2. Accepted: August 16, 2018
  3. Accepted Manuscript published: August 17, 2018 (version 1)
  4. Version of Record published: September 10, 2018 (version 2)

Copyright

© 2018, Cohen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,575
    Page views
  • 382
    Downloads
  • 28
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Erez Cohen
  2. Scott R Allen
  3. Jessica K Sawyer
  4. Donald T Fox
(2018)
Fizzy-related dictates a cell cycle switch during organ repair and tissue growth responses in the Drosophila hindgut
eLife 7:e38327.
https://doi.org/10.7554/eLife.38327

Further reading

    1. Developmental Biology
    2. Evolutionary Biology
    Alexandre P Thiery et al.
    Research Article Updated

    Development of tooth shape is regulated by the enamel knot signalling centre, at least in mammals. Fgf signalling regulates differential proliferation between the enamel knot and adjacent dental epithelia during tooth development, leading to formation of the dental cusp. The presence of an enamel knot in non-mammalian vertebrates is debated given differences in signalling. Here, we show the conservation and restriction of fgf3, fgf10, and shh to the sites of future dental cusps in the shark (Scyliorhinus canicula), whilst also highlighting striking differences between the shark and mouse. We reveal shifts in tooth size, shape, and cusp number following small molecule perturbations of canonical Wnt signalling. Resulting tooth phenotypes mirror observed effects in mammals, where canonical Wnt has been implicated as an upstream regulator of enamel knot signalling. In silico modelling of shark dental morphogenesis demonstrates how subtle changes in activatory and inhibitory signals can alter tooth shape, resembling developmental phenotypes and cusp shapes observed following experimental Wnt perturbation. Our results support the functional conservation of an enamel knot-like signalling centre throughout vertebrates and suggest that varied tooth types from sharks to mammals follow a similar developmental bauplan. Lineage-specific differences in signalling are not sufficient in refuting homology of this signalling centre, which is likely older than teeth themselves.

    1. Developmental Biology
    2. Evolutionary Biology
    Sophie Pantalacci
    Insight

    The tooth shape of sharks and mice are regulated by a similar signaling center despite their teeth having very different geometries.