1. Developmental Biology
  2. Physics of Living Systems
Download icon

Theoretical tool bridging cell polarities with development of robust morphologies

  1. Silas Boye Nissen
  2. Steven Rønhild
  3. Ala Trusina  Is a corresponding author
  4. Kim Sneppen  Is a corresponding author
  1. University of Copenhagen, Denmark
Research Article
  • Cited 0
  • Views 2,616
  • Annotations
Cite this article as: eLife 2018;7:e38407 doi: 10.7554/eLife.38407

Abstract

Despite continual renewal and damages, a multicellular organism is able to maintain its complex morphology. How is this stability compatible with the complexity and diversity of living forms? Looking for answers at protein level may be limiting as diverging protein sequences can result in similar morphologies. Inspired by the progressive role of apical-basal and planar cell polarity in development, we propose that stability, complexity, and diversity are emergent properties in populations of proliferating polarized cells. We support our hypothesis by a theoretical approach, developed to effectively capture both types of polar cell adhesions. When applied to specific cases of development – gastrulation and the origins of folds and tubes – our theoretical tool suggests experimentally testable predictions pointing to the strength of polar adhesion, restricted directions of cell polarities, and the rate of cell proliferation to be major determinants of morphological diversity and stability.

Article and author information

Author details

  1. Silas Boye Nissen

    Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9473-4755
  2. Steven Rønhild

    Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  3. Ala Trusina

    Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
    For correspondence
    trusina@nbi.ku.dk
    Competing interests
    The authors declare that no competing interests exist.
  4. Kim Sneppen

    Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
    For correspondence
    sneppen@nbi.dk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9820-3567

Funding

Danmarks Grundforskningsfond (DNRF116)

  • Silas Boye Nissen
  • Ala Trusina

Seventh Framework Programme (FP/2007/2013/ERC no. 740704)

  • Kim Sneppen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Aleksandra M Walczak, École Normale Supérieure, France

Publication history

  1. Received: May 16, 2018
  2. Accepted: November 13, 2018
  3. Accepted Manuscript published: November 27, 2018 (version 1)
  4. Version of Record published: December 6, 2018 (version 2)

Copyright

© 2018, Nissen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,616
    Page views
  • 386
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Developmental Biology
    2. Evolutionary Biology
    Lotta Salomies et al.
    Research Article
    1. Developmental Biology
    2. Genetics and Genomics
    Yamila N Torres Cleuren et al.
    Research Article