1. Computational and Systems Biology
  2. Structural Biology and Molecular Biophysics
Download icon

Simulation of spontaneous G protein activation reveals a new intermediate driving GDP unbinding

  1. Xianqiang Sun
  2. Sukrit Singh
  3. Kendall Blumer
  4. Gregory R Bowman  Is a corresponding author
  1. Washington University School of Medicine, United States
Research Article
  • Cited 13
  • Views 2,668
  • Annotations
Cite this article as: eLife 2018;7:e38465 doi: 10.7554/eLife.38465

Abstract

Activation of heterotrimeric G proteins is a key step in many signaling cascades. However, a complete mechanism for this process, which requires allosteric communication between binding sites that are ~30 Å apart, remains elusive. We construct an atomically-detailed model of G protein activation by combining three powerful computational methods: metadynamics, Markov state models (MSMs), and CARDS analysis of correlated motions. We uncover a mechanism that is consistent with a wide variety of structural and biochemical data. Surprisingly, the rate-limiting step for GDP release correlates with tilting rather than translation of the GPCR-binding helix 5. β-Strands 1-3 and helix 1 emerge as hubs in the allosteric network that links conformational changes in the GPCR-binding site to disordering of the distal nucleotide-binding site and consequent GDP release. Our approach and insights provide foundations for understanding disease-implicated G protein mutants, illuminating slow events in allosteric networks, and examining unbinding processes with slow off-rates.

Article and author information

Author details

  1. Xianqiang Sun

    Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Sukrit Singh

    Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1914-4955
  3. Kendall Blumer

    Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Gregory R Bowman

    Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, United States
    For correspondence
    g.bowman@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2083-4892

Funding

National Institutes of Health (Grant R01GM12400701)

  • Gregory R Bowman

National Science Foundation (CAREER Award MCB-1552471)

  • Gregory R Bowman

Burroughs Wellcome Fund (Career Award at the Scientific Interface)

  • Gregory R Bowman

David and Lucile Packard Foundation (Packard Fellowship for Science and Engineering)

  • Gregory R Bowman

National Institutes of Health (Grant R01GM044592)

  • Kendall Blumer
  • Gregory R Bowman

National Institutes of Health (Grant R01GM12409301)

  • Kendall Blumer
  • Gregory R Bowman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. José D Faraldo-Gómez, National Heart, Lung and Blood Institute, National Institutes of Health, United States

Publication history

  1. Received: May 17, 2018
  2. Accepted: October 4, 2018
  3. Accepted Manuscript published: October 5, 2018 (version 1)
  4. Version of Record published: November 8, 2018 (version 2)
  5. Version of Record updated: October 3, 2019 (version 3)

Copyright

© 2018, Sun et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,668
    Page views
  • 450
    Downloads
  • 13
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    2. Structural Biology and Molecular Biophysics
    Alexandra Kühnlein et al.
    Research Article

    Can replication and translation emerge in a single mechanism via self-assembly? The key molecule, transfer RNA (tRNA), is one of the most ancient molecules and contains the genetic code. Our experiments show how a pool of oligonucleotides, adapted with minor mutations from tRNA, spontaneously formed molecular assemblies and replicated information autonomously using only reversible hybridization under thermal oscillations. The pool of cross-complementary hairpins self-selected by agglomeration and sedimentation. The metastable DNA hairpins bound to a template and then interconnected by hybridization. Thermal oscillations separated replicates from their templates and drove an exponential, cross-catalytic replication. The molecular assembly could encode and replicate binary sequences with a replication fidelity corresponding to 85–90 % per nucleotide. The replication by a self-assembly of tRNA-like sequences suggests that early forms of tRNA could have been involved in molecular replication. This would link the evolution of translation to a mechanism of molecular replication.

    1. Computational and Systems Biology
    Sergey Kryazhimskiy
    Research Article Updated

    Epistasis is often used to probe functional relationships between genes, and it plays an important role in evolution. However, we lack theory to understand how functional relationships at the molecular level translate into epistasis at the level of whole-organism phenotypes, such as fitness. Here, I derive two rules for how epistasis between mutations with small effects propagates from lower- to higher-level phenotypes in a hierarchical metabolic network with first-order kinetics and how such epistasis depends on topology. Most importantly, weak epistasis at a lower level may be distorted as it propagates to higher levels. Computational analyses show that epistasis in more realistic models likely follows similar, albeit more complex, patterns. These results suggest that pairwise inter-gene epistasis should be common, and it should generically depend on the genetic background and environment. Furthermore, the epistasis coefficients measured for high-level phenotypes may not be sufficient to fully infer the underlying functional relationships.