Simulation of spontaneous G protein activation reveals a new intermediate driving GDP unbinding

  1. Xianqiang Sun
  2. Sukrit Singh
  3. Kendall Blumer
  4. Gregory R Bowman  Is a corresponding author
  1. Washington University School of Medicine, United States

Abstract

Activation of heterotrimeric G proteins is a key step in many signaling cascades. However, a complete mechanism for this process, which requires allosteric communication between binding sites that are ~30 Å apart, remains elusive. We construct an atomically-detailed model of G protein activation by combining three powerful computational methods: metadynamics, Markov state models (MSMs), and CARDS analysis of correlated motions. We uncover a mechanism that is consistent with a wide variety of structural and biochemical data. Surprisingly, the rate-limiting step for GDP release correlates with tilting rather than translation of the GPCR-binding helix 5. β-Strands 1-3 and helix 1 emerge as hubs in the allosteric network that links conformational changes in the GPCR-binding site to disordering of the distal nucleotide-binding site and consequent GDP release. Our approach and insights provide foundations for understanding disease-implicated G protein mutants, illuminating slow events in allosteric networks, and examining unbinding processes with slow off-rates.

Data availability

Summary data for all figures are made available with this manuscript. Specifically, MSM data, CARDS data, and numerical data for histograms are each provided as zipped archives. Simulation data are available upon request as there is no standard repository for such data, especially given the size of our dataset (3847 GB). The algorithms employed for calculating geometric features of protein conformations are available through MDTraj (https://github.com/mdtraj/mdtraj) and methods for building and analyzing MSMs are available through MSMBuilder (https://github.com/msmbuilder/msmbuilder) and Enspara (https://github.com/bowman-lab/enspara). The CARDS algorithm is also available through Enspara.

Article and author information

Author details

  1. Xianqiang Sun

    Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Sukrit Singh

    Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1914-4955
  3. Kendall Blumer

    Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Gregory R Bowman

    Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, United States
    For correspondence
    g.bowman@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2083-4892

Funding

National Institutes of Health (Grant R01GM12400701)

  • Gregory R Bowman

National Science Foundation (CAREER Award MCB-1552471)

  • Gregory R Bowman

Burroughs Wellcome Fund (Career Award at the Scientific Interface)

  • Gregory R Bowman

David and Lucile Packard Foundation (Packard Fellowship for Science and Engineering)

  • Gregory R Bowman

National Institutes of Health (Grant R01GM044592)

  • Kendall Blumer
  • Gregory R Bowman

National Institutes of Health (Grant R01GM12409301)

  • Kendall Blumer
  • Gregory R Bowman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. José D Faraldo-Gómez, National Heart, Lung and Blood Institute, National Institutes of Health, United States

Version history

  1. Received: May 17, 2018
  2. Accepted: October 4, 2018
  3. Accepted Manuscript published: October 5, 2018 (version 1)
  4. Version of Record published: November 8, 2018 (version 2)
  5. Version of Record updated: October 3, 2019 (version 3)

Copyright

© 2018, Sun et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,973
    views
  • 595
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xianqiang Sun
  2. Sukrit Singh
  3. Kendall Blumer
  4. Gregory R Bowman
(2018)
Simulation of spontaneous G protein activation reveals a new intermediate driving GDP unbinding
eLife 7:e38465.
https://doi.org/10.7554/eLife.38465

Share this article

https://doi.org/10.7554/eLife.38465

Further reading

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Richard Sejour, Janet Leatherwood ... Bruce Futcher
    Research Article

    Previously, Tuller et al. found that the first 30–50 codons of the genes of yeast and other eukaryotes are slightly enriched for rare codons. They argued that this slowed translation, and was adaptive because it queued ribosomes to prevent collisions. Today, the translational speeds of different codons are known, and indeed rare codons are translated slowly. We re-examined this 5’ slow translation ‘ramp.’ We confirm that 5’ regions are slightly enriched for rare codons; in addition, they are depleted for downstream Start codons (which are fast), with both effects contributing to slow 5’ translation. However, we also find that the 5’ (and 3’) ends of yeast genes are poorly conserved in evolution, suggesting that they are unstable and turnover relatively rapidly. When a new 5’ end forms de novo, it is likely to include codons that would otherwise be rare. Because evolution has had a relatively short time to select against these codons, 5’ ends are typically slightly enriched for rare, slow codons. Opposite to the expectation of Tuller et al., we show by direct experiment that genes with slowly translated codons at the 5’ end are expressed relatively poorly, and that substituting faster synonymous codons improves expression. Direct experiment shows that slow codons do not prevent downstream ribosome collisions. Further informatic studies suggest that for natural genes, slow 5’ ends are correlated with poor gene expression, opposite to the expectation of Tuller et al. Thus, we conclude that slow 5’ translation is a ‘spandrel’--a non-adaptive consequence of something else, in this case, the turnover of 5’ ends in evolution, and it does not improve translation.

    1. Computational and Systems Biology
    Hedi Chen, Xiaoyu Fan ... Boxue Tian
    Research Article

    Accurate prediction of the structurally diverse complementarity determining region heavy chain 3 (CDR-H3) loop structure remains a primary and long-standing challenge for antibody modeling. Here, we present the H3-OPT toolkit for predicting the 3D structures of monoclonal antibodies and nanobodies. H3-OPT combines the strengths of AlphaFold2 with a pre-trained protein language model and provides a 2.24 Å average RMSD between predicted and experimentally determined CDR-H3 loops, thus outperforming other current computational methods in our non-redundant high-quality dataset. The model was validated by experimentally solving three structures of anti-VEGF nanobodies predicted by H3-OPT. We examined the potential applications of H3-OPT through analyzing antibody surface properties and antibody–antigen interactions. This structural prediction tool can be used to optimize antibody–antigen binding and engineer therapeutic antibodies with biophysical properties for specialized drug administration route.