Negative regulation of conserved RSL class I bHLH transcription factors evolved independently among land plants

  1. Suvi Honkanen
  2. Anna Thamm
  3. Mario A Arteaga-Vazquez
  4. Liam Dolan  Is a corresponding author
  1. University of Oxford, United Kingdom
  2. Universidad Veracruzana, Mexico

Abstract

Basic helix-loop-helix transcription factors encoded by RSL class I genes control a gene regulatory network that positively regulates the development of filamentous rooting cells - root hairs and rhizoids - in land plants. The GLABRA2 transcription factor negatively regulates these genes in the angiosperm Arabidopsis thaliana. To find negative regulators of RSL class I genes in early diverging land plants we conducted a mutant screen in the liverwort Marchantia polymorpha. This identified FEW RHIZOIDS1 (MpFRH1) microRNA (miRNA) that negatively regulates the RSL class I gene MpRSL1. The miRNA and its mRNA target constitute a feedback mechanism that controls epidermal cell differentiation. MpFRH1 miRNA target sites are conserved among liverwort RSL class I mRNAs but are not present in RSL class I mRNAs of other land plants. These findings indicate that while RSL class I genes are ancient and conserved, independent negative regulatory mechanisms evolved in different lineages during land plant evolution.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

The following previously published data sets were used

Article and author information

Author details

  1. Suvi Honkanen

    Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3923-3365
  2. Anna Thamm

    Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Mario A Arteaga-Vazquez

    Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana, Veracruz, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  4. Liam Dolan

    Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
    For correspondence
    liam.dolan@plants.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1206-7096

Funding

European Commission (EVO-500 25028)

  • Suvi Honkanen
  • Liam Dolan

Biotechnology and Biological Sciences Research Council (BB/F016093/1)

  • Suvi Honkanen
  • Anna Thamm

University of Oxford EPA Cephalosporin scholarship

  • Anna Thamm

University of California Institute for Mexico and the United States (UCMEXUS-19941-44-OAC7)

  • Mario A Arteaga-Vazquez

The Royal Society Newton Advanced Fellowship (NA150181 RG79985)

  • Mario A Arteaga-Vazquez

Biotechnology and Biological Sciences Research Council (J0144271/1)

  • Suvi Honkanen
  • Anna Thamm

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Honkanen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,545
    views
  • 525
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Suvi Honkanen
  2. Anna Thamm
  3. Mario A Arteaga-Vazquez
  4. Liam Dolan
(2018)
Negative regulation of conserved RSL class I bHLH transcription factors evolved independently among land plants
eLife 7:e38529.
https://doi.org/10.7554/eLife.38529

Share this article

https://doi.org/10.7554/eLife.38529

Further reading

    1. Evolutionary Biology
    Wei-Yun Lai, Sheng-Kai Hsu ... Christian Schlötterer
    Research Article

    The phenomenon of parallel evolution, whereby similar genomic and phenotypic changes occur across replicated pairs of populations or species, is widely studied. Nevertheless, the determining factors of parallel evolution remain poorly understood. Theoretical studies have proposed that pleiotropy, the influence of a single gene on multiple traits, is an important factor. In order to gain a deeper insight into the role of pleiotropy for parallel evolution from standing genetic variation, we characterized the interplay between parallelism, polymorphism, and pleiotropy. The present study examined the parallel gene expression evolution in 10 replicated populations of Drosophila simulans, which were adapted from standing variation to the same new temperature regime. The data demonstrate that the parallel evolution of gene expression from standing genetic variation is positively correlated with the strength of pleiotropic effects. The ancestral variation in gene expression is, however, negatively correlated with parallelism. Given that pleiotropy is also negatively correlated with gene expression variation, we conducted a causal analysis to distinguish cause and correlation and evaluate the role of pleiotropy. The causal analysis indicated that both direct (causative) and indirect (correlational) effects of pleiotropy contribute to parallel evolution. The indirect effect is mediated by historic selective constraint in response to pleiotropy. This results in parallel selection responses due to the reduced standing variation of pleiotropic genes. The direct effect of pleiotropy is likely to reflect a genetic correlation among adaptive traits, which in turn gives rise to synergistic effects and higher parallelism.

    1. Evolutionary Biology
    Hiroshi Arai, Susumu Katsuma ... Daisuke Kageyama
    Research Article

    Wolbachia are maternally transmitted bacterial symbionts that are ubiquitous among arthropods. They can hijack host reproduction in various ways, including male-killing (MK), where the sons of infected mothers are killed during development. The recent discovery of MK-associated Wolbachia genes, i.e., oscar in Ostrinia moths and wmk in Drosophila flies, stimulates our interest in the diversity and commonality of MK mechanisms, which remain largely unclear. We recently discovered that a Wolbachia symbiont of the moth Homona magnanima carries an MK-associated prophage region encoding homologs of oscar (Hm-oscar) and wmk (wmk-1–4). Here, we investigated the effects of these genes in the native host. Upon transient overexpression, Hm-oscar, but not wmk, induced male lethality in H. magnanima, in contrast to our observations in Drosophila, where the wmk homologs, but not Hm-oscar, killed the males. Hm-oscar disrupted sex determination in male embryos by inducing a female-type doublesex splicing and impaired dosage compensation, recapitulating the Wolbachia phenotype. Cell-based transfection assays confirmed that Hm-oscar suppressed the function of masculinizer, the primary male sex determinant involved in lepidopteran dosage compensation. Our study highlights the conserved roles of oscar homologs in Wolbachia-induced lepidopteran MK and argues that Wolbachia have evolved multiple MK mechanisms in insects.