Decoding hierarchical control of sequential behavior in oscillatory EEG activity

  1. Atsushi Kikumoto
  2. Ulrich Mayr  Is a corresponding author
  1. University of Oregon, United States

Abstract

Despite strong theoretical reasons for assuming that abstract representations organize complex action sequences in terms of subplans (chunks) and sequential positions, we lack methods to directly track such content-independent, hierarchical representations in humans. We applied time-resolved, multivariate decoding analysis to the pattern of rhythmic EEG activity that was registered while participants planned and executed individual elements from pre-learned, structured sequences. Across three experiments, the theta and alpha-band activity coded basic elements and abstract control representations, in particular the ordinal position of basic elements, but also the identity and position of chunks. Further, a robust representation of higher-level, chunk identity information was only found in individuals with above-median working memory capacity, potentially providing a neural-level explanation for working-memory differences in sequential performance. Our results suggest that by decoding oscillatory activity we can track how the cognitive system traverses through the states of a hierarchical control structure.

Data availability

All data and analysis scripts have been deposited at OSF (https://osf.io/6hmrz/).

The following data sets were generated

Article and author information

Author details

  1. Atsushi Kikumoto

    Department of Psychology, University of Oregon, Eugene, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ulrich Mayr

    Department of Psychology, University of Oregon, Eugene, United States
    For correspondence
    mayr@uoregon.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7512-4556

Funding

National Science Foundation (1734264)

  • Ulrich Mayr

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: We obtained informed consent from human subjects. Consent and study procedures were approved by the University of Oregon's Human Subjects Institutional Review Board (Protocol 10272010.016).

Reviewing Editor

  1. David Badre, Brown University, United States

Publication history

  1. Received: May 22, 2018
  2. Accepted: November 8, 2018
  3. Accepted Manuscript published: November 14, 2018 (version 1)
  4. Version of Record published: November 27, 2018 (version 2)

Copyright

© 2018, Kikumoto & Mayr

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,068
    Page views
  • 441
    Downloads
  • 9
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Atsushi Kikumoto
  2. Ulrich Mayr
(2018)
Decoding hierarchical control of sequential behavior in oscillatory EEG activity
eLife 7:e38550.
https://doi.org/10.7554/eLife.38550

Further reading

    1. Neuroscience
    Movitz Lenninger, Mikael Skoglund ... Arvind Kumar
    Research Article Updated

    According to the efficient coding hypothesis, sensory neurons are adapted to provide maximal information about the environment, given some biophysical constraints. In early visual areas, stimulus-induced modulations of neural activity (or tunings) are predominantly single-peaked. However, periodic tuning, as exhibited by grid cells, has been linked to a significant increase in decoding performance. Does this imply that the tuning curves in early visual areas are sub-optimal? We argue that the time scale at which neurons encode information is imperative to understand the advantages of single-peaked and periodic tuning curves, respectively. Here, we show that the possibility of catastrophic (large) errors creates a trade-off between decoding time and decoding ability. We investigate how decoding time and stimulus dimensionality affect the optimal shape of tuning curves for removing catastrophic errors. In particular, we focus on the spatial periods of the tuning curves for a class of circular tuning curves. We show an overall trend for minimal decoding time to increase with increasing Fisher information, implying a trade-off between accuracy and speed. This trade-off is reinforced whenever the stimulus dimensionality is high, or there is ongoing activity. Thus, given constraints on processing speed, we present normative arguments for the existence of the single-peaked tuning organization observed in early visual areas.

    1. Genetics and Genomics
    2. Neuroscience
    Timothy Wu, Jennifer M Deger ... Joshua M Shulman
    Research Article Updated

    Aging is a major risk factor for Alzheimer’s disease (AD), and cell-type vulnerability underlies its characteristic clinical manifestations. We have performed longitudinal, single-cell RNA-sequencing in Drosophila with pan-neuronal expression of human tau, which forms AD neurofibrillary tangle pathology. Whereas tau- and aging-induced gene expression strongly overlap (93%), they differ in the affected cell types. In contrast to the broad impact of aging, tau-triggered changes are strongly polarized to excitatory neurons and glia. Further, tau can either activate or suppress innate immune gene expression signatures in a cell-type-specific manner. Integration of cellular abundance and gene expression pinpoints nuclear factor kappa B signaling in neurons as a marker for cellular vulnerability. We also highlight the conservation of cell-type-specific transcriptional patterns between Drosophila and human postmortem brain tissue. Overall, our results create a resource for dissection of dynamic, age-dependent gene expression changes at cellular resolution in a genetically tractable model of tauopathy.