The decoration of specialized metabolites influences stylar development

  1. Jiancai Li
  2. Meredith C Schuman
  3. Rayko Halitschke
  4. Xiang Li
  5. Han Guo
  6. Veit Grabe
  7. Austin Hammer
  8. Ian T Baldwin  Is a corresponding author
  1. Max Planck Institute for Chemical Ecology, Germany
  2. Brigham Young University, United States

Abstract

Plants produce many different specialized (secondary) metabolites that function in solving ecological challenges; few are known to function in growth or other primary processes. 17-hydroxygeranylinalool diterpene glycosides (DTGs) are abundant herbivory-induced, structurally diverse and commonly malonylated defense metabolites in Nicotiana attenuata plants. By identifying and silencing a malonyltransferase, NaMaT1, involved in DTG malonylation, we found that DTG malonylation percentages are normally remarkably uniform, but when disrupted, result in DTG-dependent reduced floral style lengths, which in turn result from reduced stylar cell sizes, IAA contents, and YUC activity; phenotypes that could be restored by IAA supplementation or by silencing the DTG pathway. Moreover, the Nicotiana genus-specific JA-deficient short-style phenotype also results from alterations in DTG malonylation patterns. Decorations of plant specialized metabolites can be tuned to remarkably uniform levels, and this regulation plays a central but poorly understood role in controlling the development of specific plant parts, such as floral styles.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

The following previously published data sets were used

Article and author information

Author details

  1. Jiancai Li

    Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4417-7612
  2. Meredith C Schuman

    Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3159-3534
  3. Rayko Halitschke

    Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1109-8782
  4. Xiang Li

    Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    No competing interests declared.
  5. Han Guo

    Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    No competing interests declared.
  6. Veit Grabe

    Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0736-2771
  7. Austin Hammer

    Department of Biology, Brigham Young University, Provo, United States
    Competing interests
    No competing interests declared.
  8. Ian T Baldwin

    Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
    For correspondence
    baldwin@ice.mpg.de
    Competing interests
    Ian T Baldwin, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5371-2974

Funding

Max-Planck-Gesellschaft (Open-access funding)

  • Ian T Baldwin

H2020 European Research Council (293926)

  • Ian T Baldwin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,739
    views
  • 368
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jiancai Li
  2. Meredith C Schuman
  3. Rayko Halitschke
  4. Xiang Li
  5. Han Guo
  6. Veit Grabe
  7. Austin Hammer
  8. Ian T Baldwin
(2018)
The decoration of specialized metabolites influences stylar development
eLife 7:e38611.
https://doi.org/10.7554/eLife.38611

Share this article

https://doi.org/10.7554/eLife.38611

Further reading

    1. Ecology
    2. Evolutionary Biology
    Vendula Bohlen Šlechtová, Tomáš Dvořák ... Joerg Bohlen
    Research Article

    Eurasia has undergone substantial tectonic, geological, and climatic changes throughout the Cenozoic, primarily associated with tectonic plate collisions and a global cooling trend. The evolution of present-day biodiversity unfolded in this dynamic environment, characterised by intricate interactions of abiotic factors. However, comprehensive, large-scale reconstructions illustrating the extent of these influences are lacking. We reconstructed the evolutionary history of the freshwater fish family Nemacheilidae across Eurasia and spanning most of the Cenozoic on the base of 471 specimens representing 279 species and 37 genera plus outgroup samples. Molecular phylogeny using six genes uncovered six major clades within the family, along with numerous unresolved taxonomic issues. Dating of cladogenetic events and ancestral range estimation traced the origin of Nemacheilidae to Indochina around 48 mya. Subsequently, one branch of Nemacheilidae colonised eastern, central, and northern Asia, as well as Europe, while another branch expanded into the Burmese region, the Indian subcontinent, the Near East, and northeast Africa. These expansions were facilitated by tectonic connections, favourable climatic conditions, and orogenic processes. Conversely, aridification emerged as the primary cause of extinction events. Our study marks the first comprehensive reconstruction of the evolution of Eurasian freshwater biodiversity on a continental scale and across deep geological time.

    1. Ecology
    2. Neuroscience
    Kathleen T Quach, Gillian A Hughes, Sreekanth H Chalasani
    Research Article

    Prey must balance predator avoidance with feeding, a central dilemma in prey refuge theory. Additionally, prey must assess predatory imminence—how close threats are in space and time. Predatory imminence theory classifies defensive behaviors into three defense modes: pre-encounter, post-encounter, and circa-strike, corresponding to increasing levels of threat—–suspecting, detecting, and contacting a predator. Although predatory risk often varies in spatial distribution and imminence, how these factors intersect to influence defensive behaviors is poorly understood. Integrating these factors into a naturalistic environment enables comprehensive analysis of multiple defense modes in consistent conditions. Here, we combine prey refuge and predatory imminence theories to develop a model system of nematode defensive behaviors, with Caenorhabditis elegans as prey and Pristionchus pacificus as predator. In a foraging environment comprised of a food-rich, high-risk patch and a food-poor, low-risk refuge, C. elegans innately exhibits circa-strike behaviors. With experience, it learns post- and pre-encounter behaviors that proactively anticipate threats. These defense modes intensify with predator lethality, with only life-threatening predators capable of eliciting all three modes. SEB-3 receptors and NLP-49 peptides, key stress regulators, vary in their impact and interdependence across defense modes. Overall, our model system reveals fine-grained insights into how stress-related signaling regulates defensive behaviors.