1. Computational and Systems Biology
  2. Developmental Biology
Download icon

A repressor-decay timer for robust temporal patterning in embryonic Drosophila neuroblast lineages

  1. Inna Averbukh
  2. Sen-Lin Lai
  3. Chris Q Doe  Is a corresponding author
  4. Naama Barkai  Is a corresponding author
  1. Weizmann Institute of Science, Israel
  2. Howard Hughes Medical Institute, University of Oregon, United States
Research Article
  • Cited 16
  • Views 1,532
  • Annotations
Cite this article as: eLife 2018;7:e38631 doi: 10.7554/eLife.38631

Abstract

Biological timers synchronize patterning processes during embryonic development. In the Drosophila embryo, neural progenitors (neuroblasts; NBs) produce a sequence of unique neurons whose identities depend on the sequential expression of temporal transcription factors (TTFs). The stereotypy and precision of NB lineages indicate reproducible TTF timer progression. We combine theory and experiments to define the timer mechanism. The TTF timer is commonly described as a relay of activators, but its regulatory circuit is also consistent with a repressor-decay timer, where TTF expression begins when its repressor decays. Theory shows that repressor-decay timers are more robust to parameter variations than activator-relay timers. This motivated us to experimentally compare the relative importance of the relay and decay interactions in-vivo. Comparing WT and mutant NBs at high temporal resolution, we show that the TTF sequence progresses primarily by repressor-decay. We suggest that need for robust performance shapes the evolutionary-selected designs of biological circuits.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Inna Averbukh

    Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1863-205X
  2. Sen-Lin Lai

    Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7531-283X
  3. Chris Q Doe

    Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, United States
    For correspondence
    cdoe@uoregon.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5980-8029
  4. Naama Barkai

    Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
    For correspondence
    naama.barkai@weizmann.ac.il
    Competing interests
    Naama Barkai, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2444-6061

Funding

Howard Hughes Medical Institute

  • Chris Q Doe

National Institutes of Health (R01-HD27056)

  • Chris Q Doe

ERC

  • Naama Barkai

BSF (2017055)

  • Chris Q Doe
  • Naama Barkai

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Wenying Shou, Fred Hutchinson Cancer Research Center, United States

Publication history

  1. Received: May 28, 2018
  2. Accepted: December 10, 2018
  3. Accepted Manuscript published: December 10, 2018 (version 1)
  4. Version of Record published: December 21, 2018 (version 2)

Copyright

© 2018, Averbukh et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,532
    Page views
  • 308
    Downloads
  • 16
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Chromosomes and Gene Expression
    2. Computational and Systems Biology
    Lucy Ham et al.
    Research Article Updated

    Single-cell expression profiling opens up new vistas on cellular processes. Extensive cell-to-cell variability at the transcriptomic and proteomic level has been one of the stand-out observations. Because most experimental analyses are destructive we only have access to snapshot data of cellular states. This loss of temporal information presents significant challenges for inferring dynamics, as well as causes of cell-to-cell variability. In particular, we typically cannot separate dynamic variability from within cells (‘intrinsic noise’) from variability across the population (‘extrinsic noise’). Here, we make this non-identifiability mathematically precise, allowing us to identify new experimental set-ups that can assist in resolving this non-identifiability. We show that multiple generic reporters from the same biochemical pathways (e.g. mRNA and protein) can infer magnitudes of intrinsic and extrinsic transcriptional noise, identifying sources of heterogeneity. Stochastic simulations support our theory, and demonstrate that ‘pathway-reporters’ compare favourably to the well-known, but often difficult to implement, dual-reporter method.

    1. Computational and Systems Biology
    2. Neuroscience
    Cathy S Chen et al.
    Research Article

    Sex-based modulation of cognitive processes could set the stage for individual differences in vulnerability to neuropsychiatric disorders. While value-based decision making processes in particular have been proposed to be influenced by sex differences, the overall correct performance in decision making tasks often show variable or minimal differences across sexes. Computational tools allow us to uncover latent variables that define different decision making approaches, even in animals with similar correct performance. Here, we quantify sex differences in mice in the latent variables underlying behavior in a classic value-based decision making task: a restless 2-armed bandit. While male and female mice had similar accuracy, they achieved this performance via different patterns of exploration. Male mice tended to make more exploratory choices overall, largely because they appeared to get 'stuck' in exploration once they had started. Female mice tended to explore less but learned more quickly during exploration. Together, these results suggest that sex exerts stronger influences on decision making during periods of learning and exploration than during stable choices. Exploration during decision making is altered in people diagnosed with addictions, depression, and neurodevelopmental disabilities, pinpointing the neural mechanisms of exploration as a highly translational avenue for conferring sex-modulated vulnerability to neuropsychiatric diagnoses.