Changes to social feeding behaviors are not sufficient for fitness gains of the Caenorhabditis elegans N2 reference strain

  1. Yuehui Zhao
  2. Lijiang Long
  3. Wen Xu
  4. Richard F Campbell
  5. Edward E Large
  6. Joshua S Greene
  7. Patrick T McGrath  Is a corresponding author
  1. Georgia Institute of Technology, United States
  2. The Rockefeller University, United States
8 figures, 4 videos, 1 table and 2 additional files

Figures

Schematic of competition assays used to measure relative fitness levels between two strains.

(a) Overview of life history of the standard reference N2 strain since its isolation from the wild. Derived alleles in npr-1 and glb-5 arose and fixed after 1957 and before 1969 when methods for cryopreservation were developed. These two alleles were identified for their role in changing foraging behavior on bacterial lawns from social to solitary behavior. (b) Schematic of pairwise competition experiments used throughout the paper to quantify fitness differences between two strains. (c) Relative proportion of each strain as ascertained by Droplet Digital PCR using a custom TaqMan probe (dots) is used to estimate the relative fitness between the two strains (line). (d) Silent mutations were edited into the 90th or 92nd amino acid of the dpy-10 gene using CRISPR/Cas9 to create a common SNV for Droplet Digital PCR. We refer to these as barcoded strains. (e) Competition experiments between the parent strain (top) and the same strain containing one of the silent mutations. We display the result from each competition experiment as a single dot overlaid on top of a boxplot showing the mean, first, and third quartiles of all replicates.

https://doi.org/10.7554/eLife.38675.003
Figure 1—source data 1

Relative proportion of each strain as ascertained by Droplet Digital PCR shown in Figure 1c.

https://doi.org/10.7554/eLife.38675.004
Figure 1—source data 2

Competition experiment using indicated barcoded strains carry the dpy-10 silent mutation shown in Figure 1e.

https://doi.org/10.7554/eLife.38675.005
Derived alleles of npr-1 and glb-5 are beneficial.

(a) The bordering rate of the N2 reference strain compared to three near isogenic lines (NILs) containing ancestral alleles of npr-1 and/or glb-5 introgressed from the CB4856 wild strain. Bordering rate is defined as the fraction of animals on the edge of the bacterial lawn at a single timepoint. Schematic of each NIL shown below along with the allele of npr-1 and glb-5 they contain. Orange represents N2-derived DNA and blue represents CB4856-derived DNA. These strains are referred to by the ancestral alleles they contain (e.g. N2glb-5=CX10744, which is an introgression surrounding glb-5). To ascertain statistical significance, ANOVA was used followed by a Tukey's Honest Significant Difference test for multiple comparison tests. NS, not significant, **p<0.01, ***p<0.001. (b) Competition experiments between NILs shown in panel a against barcoded strains shown in Figure 1d,e. Green box indicates the strain contains the barcoded allele of dpy-10. Positive values indicate Strain one is more fit; negative values indicate Strain two is more fit. NS not significant, **p<0.01, ***p<0.001 by ANOVA with Tukey’s Honest Significant Difference test or Wilcoxon-Mann-Whitney nonparametric test. (c) Competition experiments between strains containing two loss-of-function alleles of npr-1 (ad609 and ky13) along with controls. **p<0.01, ***p<0.001 by ANOVA with Tukey’s Honest Significant Difference test.

https://doi.org/10.7554/eLife.38675.006
Figure 2—source data 1

The bordering rate of the N2 compared to three near isogenic lines (NILs) containing ancestral alleles of npr-1 and/or glb-5 introgressed from the CB4856 wild strain shown in Figure 2a.

https://doi.org/10.7554/eLife.38675.007
Figure 2—source data 2

Competition experiments between N2 and NILs shown in Figure 2b.

https://doi.org/10.7554/eLife.38675.008
Figure 2—source data 3

Competition experiments between strains containing two loss-of-function alleles of npr-1 (ad609 and ky13) along with N2 shown in Figure 2c.

https://doi.org/10.7554/eLife.38675.009
Fitness advantage of N2 is independent of foraging behavior.

(a and b). Environmental O2 levels were manipulated using a Biospherix chamber. Differences in (a) bordering behavior and (b) roaming and dwelling behavior were suppressed in N2glb-5, npr-1 at lower environmental O2 levels. NS not significant, *p<0.05 by Wilcoxon-Mann-Whitney nonparametric test. (c). Fitness advantage of N2 over the barcoded N2glb-5, npr-1 strain was independent of environmental O2. NS, not significant, ***p<0.001 by ANOVA with Tukey’s Honest Significant Difference test. (d and e) Fitness differences of N2 and N2glb-5, npr-1 on (d) uniform bacterial lawns (UBL) where animals were unable to border, on plates containing agarose to prevent burrowing behaviors (NS, not significant, *p<0.05 by ANOVA with Tukey’s Honest Significant Difference test), and (e) on UV-killed bacteria (*p<0.05 by Wilcoxon-Mann-Whitney nonparametric test).

https://doi.org/10.7554/eLife.38675.010
Figure 3—source data 1

Bordering rate at ambient (21%) and lower environmental (10%) O2 levels shown in Figure 3a.

https://doi.org/10.7554/eLife.38675.011
Figure 3—source data 2

Roaming and dwelling behavioral assay in ambient (21%) and lower environmental (10%) O2 levels shown in Figure 3b.

https://doi.org/10.7554/eLife.38675.012
Figure 3—source data 3

Fitness advantage of N2 over the barcoded N2glb-5, npr-1 strain was independent of environmental O2 shown in Figure 3c.

https://doi.org/10.7554/eLife.38675.013
Figure 3—source data 4

Fitness differences of N2 and N2glb-5, npr-1 on uniform bacterial lawns (UBL) and on plates containing agarose shown in Figure 3d.

https://doi.org/10.7554/eLife.38675.014
Figure 3—source data 5

Fitness differences of N2 and N2glb-5, npr-1 on UV-killed bacteria shown in Figure 3e.

https://doi.org/10.7554/eLife.38675.015
Bordering rate and relative differences between wild C.elegans strains.

(a) A panel of 11 wild strains was tested for bordering behavior. Each of these wild strains contains ancestral alleles of glb-5 and npr-1. ***p<0.001 by ANOVA with Tukey’s Honest Significant Difference test. (b) Competition experiments between 11 wild strains and barcoded N2glb-5, npr-1 animals. Despite the similarity of bordering behavior, these wild strains displayed a range of relative fitness. NS, not significant, *p<0.05, **p<0.01, ***p<0.001 by ANOVA with Tukey’s Honest Significant Difference test.

https://doi.org/10.7554/eLife.38675.020
Figure 4—source data 1

Bordering rate of 11 wild strains shown in Figure 4a.

https://doi.org/10.7554/eLife.38675.021
Figure 4—source data 2

Competition experiments between 11 wild strains and barcoded N2glb-5, npr-1 animals shown in Figure 4b.

https://doi.org/10.7554/eLife.38675.022
Reproductive timing in N2 occurs earlier than the N2glb-5,npr-1 strain.

(a) PCA analysis of transcriptional profiles of bleach-synchronized N2 and N2glb-5,npr-1 animals grown in 10% or 21% environmental O2 (six replicates per strain/condition). The largest two eigenvectors are shown, along with the amount of variance they explain. Developmental age of animals is approximately L4 stage. (b) Hierarchical clustering of normalized, differentially expressed genes. Columns show strain and conditions; rows show gene expression. (c) Averaged effect of genotype (y-axis) vs environment (x-axis) for each gene (Supplementary file 1). A small cluster of 652 genes with similar changes is circled in red. (d) The developmental expression of these 652 genes was further investigated using a previously published dataset. Columns show developmental stage and rows show each gene. Most of these gene peaked in expression in L4 hermaphrodite animals and was further enriched in male L4 animals (Male). Soma indicates expression levels from somatic cells, suggesting this cluster is enriched in germline cells. (e) Animals identified with mature sperm. x-axis indicates time since synchronization using hatch-off. Strain/condition shown in legend. p=0.0076 by Friedman test. (f) Number of sperm produced by each strain as determined by DAPI straining. Representative images are shown below. Scale bar = 10 μm. **p<0.01 by Wilcoxon-Mann-Whitney nonparametric test. (g) Averaged total number of offspring produced by each strain when grown in different environmental O2 levels. **p<0.01 by Wilcoxon-Mann-Whitney nonparametric test. (h) Averaged egg-laying rate of L4-synchronized N2 and N2glb-5,npr-1 animals when grown at different O2 levels. x-axis indicates time since L4 stage. NS, not significant, *p<0.05, **p<0.01 by Wilcoxon-Mann-Whitney nonparametric test. (i) Number of animals observed with fertilized eggs in their uterus. x-axis indicates time from synchronized egg-lay. p=0.0109 by Friedman test.

https://doi.org/10.7554/eLife.38675.023
Figure 5—source data 1

List of normalized differentially expressed genes for PCA analysis and Hierarchical clustering.

The dataset is used for PCA analysis and Hierarchical clustering for Figure 5a and Figure 5b.

https://doi.org/10.7554/eLife.38675.024
Figure 5—source data 2

List of the relative expression levels of protein coding genes across all of the developmental stages highlighted in Figure 5c.

The dataset is used to show Figure 5d. The soruce of the gene expression data across all of the developmental stages is from previous research: Boeck et al. (2016) .

https://doi.org/10.7554/eLife.38675.025
Figure 5—source data 3

Number of animals identified with mature sperm at indicated timepoint shown in Figure 5e.

https://doi.org/10.7554/eLife.38675.026
Figure 5—source data 4

Number of sperm produced by each strain as determined by DAPI straining shown in Figure 5f.

https://doi.org/10.7554/eLife.38675.027
Figure 5—source data 5

Mean number of offspring produced by each strain when grown in different environmental O2 levels shown in Figure 5g.

https://doi.org/10.7554/eLife.38675.028
Figure 5—source data 6

Mean egg-laying rate of L4-synchronized N2 and N2glb-5,npr-1 animals when grown at different O2 levels shown in Figure 5h.

https://doi.org/10.7554/eLife.38675.029
Figure 5—source data 7

Number of animals observed with fertilized eggs in their uterus at indicated timepoint shown in Figure 5i.

https://doi.org/10.7554/eLife.38675.030
Figure 6 with 1 supplement
Feeding differences of strains containing derived alleles.

(a) N2 and N2glb-5,npr-1 animals were synchronized by hatch-off and allowed to grow at the indicated O2 levels for 72 hr. Video recordings were used to estimate the size of the animals. *p<0.05 by Wilcoxon-Mann-Whitney nonparametric test. (b) A previously published liquid, bacterial clearing assay was used to estimate food consumption for the N2glb-5,npr-1 and N2 animals. On day 4, N2 animals had consumed more bacteria than N2glb-5,npr-1animals. NS, not significant, ***p<0.001 by Wilcoxon-Mann-Whitney nonparametric test. (c). To test food consumption on agar plates, we developed a new assay by seeding 24-well agar plates with defined amounts of OP50-GFP bacteria. The number of bacteria on the plate could be estimated using a microplate reader. (d) N2 animals consumed more food than N2glb-5,npr-1 regardless of foraging behaviors. ***p<0.001 by Wilcoxon-Mann-Whitney nonparametric test. (e) Schematic of CB4856 wild strain (blue) and a NIL (CX11400) containing the N2 allele of npr-1 from N2 (orange). (f) We tested the fitness effect of the N2 allele of npr-1 in the CB4856 wild strain using the CX11400 NIL strain. NS, not significant by Wilcoxon-Mann-Whitney nonparametric test. (g) Food consumption assays between CB4856 and N2 strains or CB4856 and the CX11400 NIL. ***p<0.001 by ANOVA with Tukey’s Honest Significant Difference test. (h) Pharyngeal pumping rates of N2, CB4856 and two NIL strains. *p<0.05, ***p<0.001 by ANOVA with Tukey’s Honest Significant Difference test.

https://doi.org/10.7554/eLife.38675.031
Figure 6—source data 1

Growth rates of N2 and N2glb-5,npr-1 shown in Figure 6a.

https://doi.org/10.7554/eLife.38675.034
Figure 6—source data 2

Food consumption in liquid S media shown in Figure 6b.

https://doi.org/10.7554/eLife.38675.035
Figure 6—source data 3

Food consumption assay setup using OP50 GFP on 24-well agar plate shown in Figure 6c.

https://doi.org/10.7554/eLife.38675.036
Figure 6—source data 4

N2 animals consume more food in O2 independent manner shown in Figure 6d.

https://doi.org/10.7554/eLife.38675.037
Figure 6—source data 5

Fitness effect of the N2 allele of npr-1 in the CB4856 wild strain shown in Figure 6f.

https://doi.org/10.7554/eLife.38675.038
Figure 6—source data 6

Food consumption assays between CB4856 and N2 strains or CB4856 and the CX11400 NIL shown in Figure 6g.

https://doi.org/10.7554/eLife.38675.039
Figure 6—source data 7

Pharyngeal pumping rates of N2, CB4856 and two NIL strains shown in Figure 6h.

https://doi.org/10.7554/eLife.38675.040
Figure 6—figure supplement 1
Measurement of pharyngeal sizes of adult animals.

(a) Schematic of measurements made for the pharynx. (b) Pharyngeal sizes of adult animals, normalized to the N2 strain. ***p<0.001 by ANOVA with Tukey’s Honest Significant Difference test.

https://doi.org/10.7554/eLife.38675.032
Figure 6—figure supplement 1—source data 1

Measurement of pharyngeal sizes of adult animals shown in Figure 6—figure supplement 1b.

https://doi.org/10.7554/eLife.38675.033
O2-sensing neurons contribute to fitness differences of N2 and N2glb-5,npr-1.

(a) Schematic showing putative cellular sites of action for glb-5 and npr-1. glb-5 modulates O2 responses in the URX body cavity neurons. npr-1 is thought to modulate electrical signaling in the RMG hub-and-spoke neuron which forms gap junctions onto URX. (b and c) Competition experiments between indicated strains. qaIs2241 is an integrated genetic cassette that ablates the URX, AQR, and PQR neurons. Green indicates the presence of the cassette (and loss of URX, AQR, and PQR neurons). *p<0.05, **p<0.01 by Wilcoxon-Mann-Whitney nonparametric test. (d) Bordering rates of indicated strains. The qaIs2241 cassette suppresses bordering of the N2glb-5,npr-1 strains. NS not significant, *p<0.05 by Wilcoxon-Mann-Whitney nonparametric test. (e) Pharyngeal pumping rates of N2, and N2 strains carrying the qaIs2241 cassette. *p<0.05 by Wilcoxon-Mann-Whitney nonparametric test. (f) Relative food consumption rates between the indicated strains. ***p<0.001 by Wilcoxon-Mann-Whitney nonparametric test. (g) Number of animals observed with fertilized eggs in their uterus. x-axis indicates time from synchronized egg-lay. p=0.0455 by Friedman test.

https://doi.org/10.7554/eLife.38675.041
Figure 7—source data 1

Competition experiments between indicated strains carry qaIs2241 cassette shown in Figure 7b.

https://doi.org/10.7554/eLife.38675.042
Figure 7—source data 2

Competition experiments between indicated strains carry qaIs2241 cassette shown in Figure 7c.

https://doi.org/10.7554/eLife.38675.043
Figure 7—source data 3

Bordering fraction of indicated strains shown in Figure 7d.

https://doi.org/10.7554/eLife.38675.044
Figure 7—source data 4

Pharyngeal pumping rates of N2 and N2 carries qaIs2241 cassette shown in Figure 7e.

https://doi.org/10.7554/eLife.38675.045
Figure 7—source data 5

Food consumption assay of N2 and N2 carries qaIs2241 cassette shown in Figure 7f.

https://doi.org/10.7554/eLife.38675.046
Figure 7—source data 6

Number of animals observed with fertilized eggs in their uterus shown in Figure 7g.

https://doi.org/10.7554/eLife.38675.047
daf-22 is required for fitness differences of N2 and N2glb-5,npr-1.

(a) Competition experiments between indicated strains. daf-22 encodes a sterol carrier protein, which is required for biosynthesis of most ascaroside pheromones. Red indicates the strain contain a deletion that spans the gene. **p<0.01 by Wilcoxon-Mann-Whitney nonparametric test. (b) Number of animals that carry fertilized eggs at the indicated timepoints. p=6.61×10−4 by Friedman test. (c) On plate feeding assays of the indicated strains. NS, not significant, ***p<0.001 by ANOVA with Tukey’s Honest Significant Difference test. (d and e) Attempts to rescue the relative food intake and reproductive timing defects of the daf-22 strain using crude pheromone. Neither of two concentrations of crude pheromone isolated from animals grown in liquid cultures had a significant effect on the two traits. NS, not significant, ***p<0.001 by ANOVA with Tukey’s Honest Significant Difference test. p=7.45×10−6 by Friedman test.

https://doi.org/10.7554/eLife.38675.048
Figure 8—source data 1

Competition experiment between indicated strains shown in Figure 8a.

https://doi.org/10.7554/eLife.38675.049
Figure 8—source data 2

Number of animals observed with fertilized eggs in their uterus shown in Figure 8b.

https://doi.org/10.7554/eLife.38675.050
Figure 8—source data 3

Food consumption assay of indicated strains shown in Figure 8c.

https://doi.org/10.7554/eLife.38675.051
Figure 8—source data 4

Number of animals observed with fertilized eggs in their uterus in different pheromone concentration shown in Figure 8d.

https://doi.org/10.7554/eLife.38675.052
Figure 8—source data 5

Food consumption assay in different pheromone concentration shown in Figure 8e.

https://doi.org/10.7554/eLife.38675.053

Videos

Video 1
N2glb-5, npr-1 animal’s behavior in 10% O2 level.

A single generation (3 days) of growth of the N2glb-5, npr-1 strain in the presence of 10% environmental O2.

https://doi.org/10.7554/eLife.38675.016
Video 2
N2glb-5, npr-1 animal’s behavior in 21% O2 level.

A single generation (3 days) of growth of the N2glb-5, npr-1 strain in the presence of 21% environmental O2.

https://doi.org/10.7554/eLife.38675.017
Video 3
N2 animal’s behavior in 10% O2 level.

A single generation (3 days) of growth of the N2 strain in the presence of 10% environmental O2.

https://doi.org/10.7554/eLife.38675.018
Video 4
N2 animal’s behavior in 21% O2 level.

A single generation (3 days) of growth of the N2 strain in the presence of 21% environmental O2.

https://doi.org/10.7554/eLife.38675.019

Tables

Key resources table
Reagent type
or resource
DesignationSource of referenceIdentifiersAdditional information
Gene
(C. elegans)
npr-1Worm baseWormbase ID:
WBGene00003807
Sequence: C39E6.6
Gene
(C. elegans)
glb-5Worm baseWormbase ID:
WBGene00015964
Sequence: C18C4.1
Gene
(C. elegans)
dpy-10Worm baseWormbase ID:
WBGene00001072
Sequence: T14B4.7
Gene
(C. elegans)
daf-22Worm baseWormbase ID:
WBGene00013284
Sequence: Y57A10C.6
Strain, strain
background
(E. coli)
OP50Caenorhabditis
genetics center (CGC)
RRID:WB-STRAIN:OP50
Strain, strain
background
(E. coli)
OP50 GFPCaenorhabditis
genetics center (CGC)
RRID:WB-STRAIN:OP50-GFPwith pFPV25.1
express GFP.
Strain
(C. elegans)
N2Cori Bargmann
Lab (The Rockefeller
University)
RRID:WB-STRAIN:N2
Strain
(C. elegans)
CB4856Caenorhabditis elegans
Natural Diversity
Resource (CeNDR)
RRID:WB-STRAIN:CB4856Website: https://www.elegansvariation.org/
Strain
(C. elegans)
DL238Caenorhabditis elegans
Natural Diversity
Resource (CeNDR)
RRID:WB-STRAIN:DL238Website: https://www.elegansvariation.org/
Strain
(C. elegans)
JU258Caenorhabditis elegans
Natural Diversity
Resource (CeNDR)
RRID:WB-STRAIN:JU258Website: https://www.elegansvariation.org/
Strain
(C. elegans)
JU775Caenorhabditis elegans
Natural Diversity
Resource (CeNDR)
RRID:WB-STRAIN:JU775Website: https://www.elegansvariation.org/
Strain
(C. elegans)
MY16Caenorhabditis elegans
Natural Diversity
Resource (CeNDR)
RRID:WB-STRAIN:MY16Website: https://www.elegansvariation.org/
Strain
(C. elegans)
MY23Caenorhabditis elegans
Natural Diversity
Resource (CeNDR)
RRID:WB-STRAIN:MY23Website: https://www.elegansvariation.org/
Strain
(C. elegans)
CX11314Caenorhabditis elegans
Natural Diversity
Resource (CeNDR)
RRID:WB-STRAIN:CX11314Website: https://www.elegansvariation.org/
Strain
(C. elegans)
LKC34Caenorhabditis elegans
Natural Diversity
Resource (CeNDR)
RRID:WB-STRAIN:LKC34Website: https://www.elegansvariation.org/
Strain
(C. elegans)
ED3017Caenorhabditis elegans
Natural Diversity
Resource (CeNDR)
RRID:WB-STRAIN:ED3017Website: https://www.elegansvariation.org/
Strain
(C. elegans)
JT11398Caenorhabditis elegans
Natural Diversity
Resource (CeNDR)
RRID:WB-STRAIN:JT11398Website: https://www.elegansvariation.org/
Strain
(C. elegans)
EG4725Caenorhabditis elegans
Natural Diversity
Resource (CeNDR)
RRID:WB-STRAIN:EG4725Website: https://www.elegansvariation.org/
Strain
(C. elegans)
PTM229This paperRRID:WB-STRAIN:PTM229Strain Background: N2
Strain
(C. elegans)
PTM288This paperRRID:WB-STRAIN:PTM288Strain Background: N2
Strain
(C. elegans)
PTM289This paperRRID:WB-STRAIN:PTM289Strain Background: N2
Strain
(C. elegans)
PTM95PMID: 27467070RRID:WB-STRAIN:PTM95Strain Background: N2
Strain
(C. elegans)
CX12311PMID: 21849976RRID:WB-STRAIN:CX12311Strain Background: N2
Strain
(C. elegans)
QG1PMID: 27172189RRID:WB-STRAIN:QG1Strain Background: N2
Strain
(C. elegans)
CX10774PMID: 19285466RRID:WB-STRAIN:CX10774Strain Background: N2
Strain
(C. elegans)
CX11400PMID: 23284308RRID:WB-STRAIN:CX11400Strain Background:
CB4856
Strain
(C. elegans)
CX4148PMID: 9741632RRID:WB-STRAIN:CX4148Strain Background: N2
Strain
(C. elegans)
DA609PMID: 9741632RRID:WB-STRAIN:DA609Strain Background: N2
Strain
(C. elegans)
CX7102PMID: 16903785RRID:WB-STRAIN:CX7102Strain Background: N2
Strain
(C. elegans)
PTM400This paperRRID:WB-STRAIN:PTM400Strain Background: N2
Strain
(C. elegans)
PTM401This paperRRID:WB-STRAIN:PTM401Strain Background: N2
Strain
(C. elegans)
PTM402This paperRRID:WB-STRAIN:PTM402Strain Background: N2
Strain
(C. elegans)
PTM403This paperRRID:WB-STRAIN:PTM403Strain Background: N2
Strain
(C. elegans)
PTM404This paperRRID:WB-STRAIN:PTM404Strain Background: N2
Strain
(C. elegans)
PTM405This paperRRID:WB-STRAIN:PTM405Strain Background: N2
Strain
(C. elegans)
PTM408This paperRRID:WB-STRAIN:PTM408Strain Background: N2
Sequence-based
reagents
(Plasmid)
Plasmid: pDD162
PrU6::dpy-10_sgRNA
PMID: 27467070CRISPR/Cas9 gene
editing sgRNA
Sequence-based
reagents
(Plasmid)
Plasmid: pDD162
Preft3::Cas9
PMID: 27467070CRISPR/Cas9 gene
editing Cas9
Sequence-based
reagents
(Oligonucleotide)
dpy-10 (cn64)PMID: 25161212CRISPR/Cas9 gene
editing DNA repair
oligo for inducing
dpy-10 cn64 mutation
Sequence-based
reagents
(Oligonucleotide)
dpy-10 (kah82/kah83)This paperCRISPR/Cas9 gene
editing DNA repair
oligo for inducing
dpy-10 Thr90 slient
mutation
Sequence-based
reagents
(Oligonucleotide)
dpy-10 (kah84)This paperCRISPR/Cas9 gene
editing DNA repair
oligo for inducing
dpy-10 Arg92 slient
mutation
Chemical
compound, drug
1x Antibiotic-AntimycoticThermoFisherCat. No.: 15240062
Chemical
compound, drug
FUDRSigmaCat. No.: F0503
Commercial
assay, kit
Taqman probe:
dpy-10 (kah82/kah83)
ThermoFisher: Custom
TaqMan SNP
Genotyping Assays
PTM09
Commercial
assay, kit
Taqman probe:
dpy-10 (kah84)
ThermoFisher: Custom
TaqMan SNP
Genotyping Assays
PTM10
Commercial
assay, kit
Taqman probe:
npr-1(g320)
ThermoFisher: Custom
TaqMan SNP
Genotyping Assays
PTM08
Commercial
assay, kit
Taqman probe:
WBVar00209467
ThermoFisher: Custom
TaqMan SNP
Genotyping Assays
PTM11
Commercial
assay, kit
TruSeq Stranded
mRNA kit
IlluminaCat. No.: 20020595
Commercial
assay, kit
Zymo DNA
isolation kit
ZymoCat. No.: D4071
Commercial
assay, kit
Zymo DNA
cleanup kit
ZymoCat. No.: D4064
Commercial
assay, kit
ddPCR Supermix
for Probes
BIORADCat. No.: 1863010
Commercial
assay, kit
Droplet Generation
Oils
BIORADCat. No.: 1863005
Commercial
assay, kit
ddPCR Droplet
Reader Oil
BIORADCat. No.: 1863004
Commercial
assay, kit
VECTASHIELD antifade
Mounting Medium
with DAPI
VECTORCat. No.: H-1200
Software,
Algorithm
edgeRPMID: 19910308RRID:SCR_012802Opensource: https://bioconductor.org/packages/release/bioc/html/edgeR.html
Software,
Algorithm
SARToolsPMID: 27280887RRID:SCR_016533Opensource: https://github.com/PF2-pasteur-fr/SARTools
Software,
Algorithm
MATLABMathWorksRRID:SCR_001622
Software,
Algorithm
RstudioRstudioRRID:SCR_000432https://www.rstudio.com/
Software,
Algorithm
JMP12SAS JMPRRID:SCR_014242
Software,
Algorithm
Image JNIHRRID:SCR_003070Opensource: https://imagej.nih.gov/ij/
Software,
Algorithm
MetaMorphMolecular DevicesRRID:SCR_002368
Software,
Algorithm
Custom TaqMan
Assay Design Tool
ThermoFisherhttps://www.thermofisher.com/order/custom-genomic-products/tools/genotyping/

Additional files

Supplementary file 1

Full list of average read count per gene of each strain in 10% O2 or 21% O2 level.

The table contains the full list of average read count per gene. Each gene count number per strain/condition is the average of 6 replicates.

https://doi.org/10.7554/eLife.38675.054
Transparent reporting form
https://doi.org/10.7554/eLife.38675.055

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yuehui Zhao
  2. Lijiang Long
  3. Wen Xu
  4. Richard F Campbell
  5. Edward E Large
  6. Joshua S Greene
  7. Patrick T McGrath
(2018)
Changes to social feeding behaviors are not sufficient for fitness gains of the Caenorhabditis elegans N2 reference strain
eLife 7:e38675.
https://doi.org/10.7554/eLife.38675