Recalibrating timing behavior via expected covariance between temporal cues

  1. Benjamin J De Corte
  2. Rebecca R Della Valle
  3. Matthew S Matell  Is a corresponding author
  1. University of Iowa, United States
  2. University of Delaware, United States
  3. Villanova University, United States

Abstract

Individuals must predict future events to proactively guide their behavior. Predicting when events will occur is a critical component of these expectations. Temporal expectations are often generated based on individual cue-duration relationships. However, the durations associated with different environmental cues will often co-vary due to a common cause. We show that timing behavior may be calibrated based on this expected covariance, which we refer to as the 'common cause hypothesis'. In five experiments using rats, we found that when the duration associated with one temporal cue changes, timed-responding to other cues shift in the same direction. Furthermore, training subjects that expecting covariance is not appropriate in a given situation blocks this effect. Finally, we confirmed that this transfer is context-dependent. These results reveal a novel principle that modulates timing behavior, which we predict will apply across a variety of magnitude-expectations.

Data availability

Datasets and all functions used for analysis are available as source files associated with the manuscript, both in a compiled (i.e., data/code for all experiments) and figure-specific manner.

The following data sets were generated

Article and author information

Author details

  1. Benjamin J De Corte

    Iowa Neuroscience Institute, University of Iowa, Iowa city, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6741-6324
  2. Rebecca R Della Valle

    Department of Psychological and Brain Sciences, University of Delaware, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Matthew S Matell

    Department of Psychological and Brain Sciences, Villanova University, Villanova, United States
    For correspondence
    matthew.matell@villanova.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5620-8316

Funding

Alfred P. Sloan Foundation (Scholarship)

  • Benjamin J De Corte

National Institute of Neurological Disorders and Stroke (NIH T32NS007421)

  • Benjamin J De Corte

National Institute on Drug Abuse (NIH R15DA039405)

  • Matthew S Matell

National Institute of Neurological Disorders and Stroke (NIH F31NS106737)

  • Benjamin J De Corte

Kwak-Ferguson Fellowship (Fellowship)

  • Benjamin J De Corte

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Geoffrey Schoenbaum, National Institute on Drug Abuse, National Institutes of Health, United States

Ethics

Animal experimentation: All procedures accorded with Villanova University's Animal Care and Use Committee guidelines (IACUC, protocol #1880) and the Declaration of Helsinki.

Version history

  1. Received: May 31, 2018
  2. Accepted: October 31, 2018
  3. Accepted Manuscript published: November 2, 2018 (version 1)
  4. Version of Record published: November 14, 2018 (version 2)

Copyright

© 2018, De Corte et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,275
    views
  • 190
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Benjamin J De Corte
  2. Rebecca R Della Valle
  3. Matthew S Matell
(2018)
Recalibrating timing behavior via expected covariance between temporal cues
eLife 7:e38790.
https://doi.org/10.7554/eLife.38790

Share this article

https://doi.org/10.7554/eLife.38790

Further reading

    1. Evolutionary Biology
    2. Neuroscience
    Daniel Thiel, Luis Alfonso Yañez Guerra ... Gáspár Jékely
    Research Article

    Neuropeptides are ancient signaling molecules in animals but only few peptide receptors are known outside bilaterians. Cnidarians possess a large number of G protein-coupled receptors (GPCRs) – the most common receptors of bilaterian neuropeptides – but most of these remain orphan with no known ligands. We searched for neuropeptides in the sea anemone Nematostella vectensis and created a library of 64 peptides derived from 33 precursors. In a large-scale pharmacological screen with these peptides and 161 N. vectensis GPCRs, we identified 31 receptors specifically activated by 1 to 3 of 14 peptides. Mapping GPCR and neuropeptide expression to single-cell sequencing data revealed how cnidarian tissues are extensively connected by multilayer peptidergic networks. Phylogenetic analysis identified no direct orthology to bilaterian peptidergic systems and supports the independent expansion of neuropeptide signaling in cnidarians from a few ancestral peptide-receptor pairs.

    1. Evolutionary Biology
    Erica R Kwiatkowski, Patrick Emery
    Insight

    Studies of the starlet sea anemone provide important insights into the early evolution of the circadian clock in animals.