Recalibrating timing behavior via expected covariance between temporal cues

  1. Benjamin J De Corte
  2. Rebecca R Della Valle
  3. Matthew S Matell  Is a corresponding author
  1. University of Iowa, United States
  2. University of Delaware, United States
  3. Villanova University, United States

Abstract

Individuals must predict future events to proactively guide their behavior. Predicting when events will occur is a critical component of these expectations. Temporal expectations are often generated based on individual cue-duration relationships. However, the durations associated with different environmental cues will often co-vary due to a common cause. We show that timing behavior may be calibrated based on this expected covariance, which we refer to as the 'common cause hypothesis'. In five experiments using rats, we found that when the duration associated with one temporal cue changes, timed-responding to other cues shift in the same direction. Furthermore, training subjects that expecting covariance is not appropriate in a given situation blocks this effect. Finally, we confirmed that this transfer is context-dependent. These results reveal a novel principle that modulates timing behavior, which we predict will apply across a variety of magnitude-expectations.

Data availability

Datasets and all functions used for analysis are available as source files associated with the manuscript, both in a compiled (i.e., data/code for all experiments) and figure-specific manner.

The following data sets were generated

Article and author information

Author details

  1. Benjamin J De Corte

    Iowa Neuroscience Institute, University of Iowa, Iowa city, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6741-6324
  2. Rebecca R Della Valle

    Department of Psychological and Brain Sciences, University of Delaware, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Matthew S Matell

    Department of Psychological and Brain Sciences, Villanova University, Villanova, United States
    For correspondence
    matthew.matell@villanova.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5620-8316

Funding

Alfred P. Sloan Foundation (Scholarship)

  • Benjamin J De Corte

National Institute of Neurological Disorders and Stroke (NIH T32NS007421)

  • Benjamin J De Corte

National Institute on Drug Abuse (NIH R15DA039405)

  • Matthew S Matell

National Institute of Neurological Disorders and Stroke (NIH F31NS106737)

  • Benjamin J De Corte

Kwak-Ferguson Fellowship (Fellowship)

  • Benjamin J De Corte

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures accorded with Villanova University's Animal Care and Use Committee guidelines (IACUC, protocol #1880) and the Declaration of Helsinki.

Reviewing Editor

  1. Geoffrey Schoenbaum, National Institute on Drug Abuse, National Institutes of Health, United States

Version history

  1. Received: May 31, 2018
  2. Accepted: October 31, 2018
  3. Accepted Manuscript published: November 2, 2018 (version 1)
  4. Version of Record published: November 14, 2018 (version 2)

Copyright

© 2018, De Corte et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,251
    Page views
  • 185
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Benjamin J De Corte
  2. Rebecca R Della Valle
  3. Matthew S Matell
(2018)
Recalibrating timing behavior via expected covariance between temporal cues
eLife 7:e38790.
https://doi.org/10.7554/eLife.38790

Further reading

    1. Evolutionary Biology
    Hironori Funabiki, Isabel E Wassing ... Thomas Carroll
    Research Article

    5-Methylcytosine (5mC) and DNA methyltransferases (DNMTs) are broadly conserved in eukaryotes but are also frequently lost during evolution. The mammalian SNF2 family ATPase HELLS and its plant ortholog DDM1 are critical for maintaining 5mC. Mutations in HELLS, its activator CDCA7, and the de novo DNA methyltransferase DNMT3B, cause immunodeficiency-centromeric instability-facial anomalies (ICF) syndrome, a genetic disorder associated with the loss of DNA methylation. We here examine the coevolution of CDCA7, HELLS and DNMTs. While DNMT3, the maintenance DNA methyltransferase DNMT1, HELLS, and CDCA7 are all highly conserved in vertebrates and green plants, they are frequently co-lost in other evolutionary clades. The presence-absence patterns of these genes are not random; almost all CDCA7 harboring eukaryote species also have HELLS and DNMT1 (or another maintenance methyltransferase, DNMT5). Coevolution of presence-absence patterns (CoPAP) analysis in Ecdysozoa further indicates coevolutionary linkages among CDCA7, HELLS, DNMT1 and its activator UHRF1. We hypothesize that CDCA7 becomes dispensable in species that lost HELLS or DNA methylation, and/or the loss of CDCA7 triggers the replacement of DNA methylation by other chromatin regulation mechanisms. Our study suggests that a unique specialized role of CDCA7 in HELLS-dependent DNA methylation maintenance is broadly inherited from the last eukaryotic common ancestor.

    1. Developmental Biology
    2. Evolutionary Biology
    Nico Posnien, Vera S Hunnekuhl, Gregor Bucher
    Review Article

    Gene expression has been employed for homologizing body regions across bilateria. The molecular comparison of vertebrate and fly brains has led to a number of disputed homology hypotheses. Data from the fly Drosophila melanogaster have recently been complemented by extensive data from the red flour beetle Tribolium castaneum with its more insect-typical development. In this review, we revisit the molecular mapping of the neuroectoderm of insects and vertebrates to reconsider homology hypotheses. We claim that the protocerebrum is non-segmental and homologous to the vertebrate fore- and midbrain. The boundary between antennal and ocular regions correspond to the vertebrate mid-hindbrain boundary while the deutocerebrum represents the anterior-most ganglion with serial homology to the trunk. The insect head placode is shares common embryonic origin with the vertebrate adenohypophyseal placode. Intriguingly, vertebrate eyes develop from a different region compared to the insect compound eyes calling organ homology into question. Finally, we suggest a molecular re-definition of the classic concepts of archi- and prosocerebrum.