Generation of a versatile BiFC ORFeome library for analyzing protein-protein interactions in live Drosophila

  1. Johannes Bischof
  2. Marilyne Duffraisse
  3. Edy Furger
  4. Leiore Ajuria
  5. Guillaume Giraud
  6. Solene Vanderperre
  7. Rachel Paul
  8. Mikael Björklund
  9. Damien Ahr
  10. Alexis W Ahmed
  11. Lionel Spinelli
  12. Christine Brun
  13. Konrad Basler
  14. Samir Merabet  Is a corresponding author
  1. University of Zurich, Switzerland
  2. Institut de Génomique Fonctionnelle de Lyon, France
  3. Zhejiang University, China
  4. Aix Marseille University, France

Abstract

Transcription factors achieve specificity by establishing intricate interaction networks that will change depending on the cell context. Capturing these interactions in live condition is however a challenging issue that requires sensitive and non-invasive methods. We present a set of fly lines, called 'multicolor BiFC library', which covers most of the Drosophila transcription factors for performing Bimolecular Fluorescence Complementation (BiFC). The multicolor BiFC library can be used to probe two different binary interactions simultaneously and is compatible for large-scale interaction screens. The library can also be coupled with established Drosophila genetic resources to analyze interactions in the developmentally relevant expression domain of each protein partner. We provide proof of principle experiments of these various applications, using Hox proteins in the live Drosophila embryo as a case study. Overall this novel collection of ready-to-use fly lines constitutes an unprecedented genetic toolbox for the identification and analysis of protein-protein interactions in vivo.

Data availability

Fly lines generated for the project have been deposited to the FlyORF library and are available upon request to FlyORF (https://flyorf.ch/index.php/orf-collection). The numerical, processed data used for this study is provided in the manuscript, figures and supplementary files.

Article and author information

Author details

  1. Johannes Bischof

    Institute of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
    Competing interests
    Johannes Bischof, involved in maintaining and distributing the fly lines via the not-for-profit FlyORF project. There are no other competing interests to declare.
  2. Marilyne Duffraisse

    ENS Lyon UMR5242, Institut de Génomique Fonctionnelle de Lyon, Lyon, France
    Competing interests
    No competing interests declared.
  3. Edy Furger

    Institute of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
    Competing interests
    No competing interests declared.
  4. Leiore Ajuria

    ENS Lyon UMR5242, Institut de Génomique Fonctionnelle de Lyon, Lyon, France
    Competing interests
    No competing interests declared.
  5. Guillaume Giraud

    ENS Lyon UMR5242, Institut de Génomique Fonctionnelle de Lyon, Lyon, France
    Competing interests
    No competing interests declared.
  6. Solene Vanderperre

    ENS Lyon UMR5242, Institut de Génomique Fonctionnelle de Lyon, Lyon, France
    Competing interests
    No competing interests declared.
  7. Rachel Paul

    ENS Lyon UMR5242, Institut de Génomique Fonctionnelle de Lyon, Lyon, France
    Competing interests
    No competing interests declared.
  8. Mikael Björklund

    Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
    Competing interests
    Mikael Björklund, involved in the development of the FlyORF resource. There are no other competing interests to declare.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2176-681X
  9. Damien Ahr

    ENS Lyon UMR5242, Institut de Génomique Fonctionnelle de Lyon, Lyon, France
    Competing interests
    No competing interests declared.
  10. Alexis W Ahmed

    ENS Lyon UMR5242, Institut de Génomique Fonctionnelle de Lyon, Lyon, France
    Competing interests
    No competing interests declared.
  11. Lionel Spinelli

    TAGC U1090, Aix Marseille University, Marseille, France
    Competing interests
    No competing interests declared.
  12. Christine Brun

    TAGC U1090, Aix Marseille University, Marseille, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5563-6765
  13. Konrad Basler

    Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
    Competing interests
    Konrad Basler, involved in maintaining and distributing the fly lines via the not-for-profit FlyORF project. There are no other competing interests to declare.
  14. Samir Merabet

    ENS Lyon UMR5242, Institut de Génomique Fonctionnelle de Lyon, Lyon, France
    For correspondence
    samir.merabet@ens-lyon.fr
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7629-703X

Funding

Fondation pour la Recherche Médicale (1122556)

  • Johannes Bischof
  • Marilyne Duffraisse
  • Edy Furger
  • Leiore Ajuria
  • Guillaume Giraud
  • Solene Vanderperre
  • Rachel Paul
  • Samir Merabet

Cefipra

  • Johannes Bischof
  • Marilyne Duffraisse
  • Edy Furger
  • Leiore Ajuria
  • Guillaume Giraud
  • Solene Vanderperre
  • Rachel Paul
  • Samir Merabet

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Bischof et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,665
    views
  • 853
    downloads
  • 41
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Johannes Bischof
  2. Marilyne Duffraisse
  3. Edy Furger
  4. Leiore Ajuria
  5. Guillaume Giraud
  6. Solene Vanderperre
  7. Rachel Paul
  8. Mikael Björklund
  9. Damien Ahr
  10. Alexis W Ahmed
  11. Lionel Spinelli
  12. Christine Brun
  13. Konrad Basler
  14. Samir Merabet
(2018)
Generation of a versatile BiFC ORFeome library for analyzing protein-protein interactions in live Drosophila
eLife 7:e38853.
https://doi.org/10.7554/eLife.38853

Share this article

https://doi.org/10.7554/eLife.38853

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Omid Gholamalamdari, Tom van Schaik ... Andrew S Belmont
    Research Article

    Models of nuclear genome organization often propose a binary division into active versus inactive compartments yet typically overlook nuclear bodies. Here, we integrated analysis of sequencing and image-based data to compare genome organization in four human cell types relative to three different nuclear locales: the nuclear lamina, nuclear speckles, and nucleoli. Although gene expression correlates mostly with nuclear speckle proximity, DNA replication timing correlates with proximity to multiple nuclear locales. Speckle attachment regions emerge as DNA replication initiation zones whose replication timing and gene composition vary with their attachment frequency. Most facultative LADs retain a partially repressed state as iLADs, despite their positioning in the nuclear interior. Knock out of two lamina proteins, Lamin A and LBR, causes a shift of H3K9me3-enriched LADs from lamina to nucleolus, and a reciprocal relocation of H3K27me3-enriched partially repressed iLADs from nucleolus to lamina. Thus, these partially repressed iLADs appear to compete with LADs for nuclear lamina attachment with consequences for replication timing. The nuclear organization in adherent cells is polarized with nuclear bodies and genomic regions segregating both radially and relative to the equatorial plane. Together, our results underscore the importance of considering genome organization relative to nuclear locales for a more complete understanding of the spatial and functional organization of the human genome.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Hans Tobias Gustafsson, Lucas Ferguson ... Oliver J Rando
    Research Article

    Among the major classes of RNAs in the cell, tRNAs remain the most difficult to characterize via deep sequencing approaches, as tRNA structure and nucleotide modifications can each interfere with cDNA synthesis by commonly-used reverse transcriptases (RTs). Here, we benchmark a recently-developed RNA cloning protocol, termed Ordered Two-Template Relay (OTTR), to characterize intact tRNAs and tRNA fragments in budding yeast and in mouse tissues. We show that OTTR successfully captures both full-length tRNAs and tRNA fragments in budding yeast and in mouse reproductive tissues without any prior enzymatic treatment, and that tRNA cloning efficiency can be further enhanced via AlkB-mediated demethylation of modified nucleotides. As with other recent tRNA cloning protocols, we find that a subset of nucleotide modifications leave misincorporation signatures in OTTR datasets, enabling their detection without any additional protocol steps. Focusing on tRNA cleavage products, we compare OTTR with several standard small RNA-Seq protocols, finding that OTTR provides the most accurate picture of tRNA fragment levels by comparison to "ground truth" Northern blots. Applying this protocol to mature mouse spermatozoa, our data dramatically alter our understanding of the small RNA cargo of mature mammalian sperm, revealing a far more complex population of tRNA fragments - including both 5′ and 3′ tRNA halves derived from the majority of tRNAs – than previously appreciated. Taken together, our data confirm the superior performance of OTTR to commercial protocols in analysis of tRNA fragments, and force a reappraisal of potential epigenetic functions of the sperm small RNA payload.