The flow responsive transcription factor Klf2 is required for myocardial wall integrity by modulating Fgf signaling

Abstract

Complex interplay between cardiac tissues is crucial for their integrity. The flow responsive transcription factor KLF2, which is expressed in the endocardium, is vital for cardiovascular development but its exact role remains to be defined. To this end, we mutated both klf2 paralogues in zebrafish, and while single mutants exhibit no obvious phenotype, double mutants display a novel phenotype of cardiomyocyte extrusion towards the abluminal side. This extrusion requires cardiac contractility and correlates with the mislocalization of N-cadherin from the lateral to the apical side of cardiomyocytes. Transgenic rescue data show that klf2 expression in endothelium, but not myocardium, prevents this cardiomyocyte extrusion phenotype. Transcriptome analysis of klf2 mutant hearts reveals that Fgf signaling is affected, and accordingly, we find that inhibition of Fgf signaling in wild-type animals can lead to abluminal cardiomyocyte extrusion. These studies provide new insights into how Klf2 regulates cardiovascular development and specifically myocardial wall integrity.

Data availability

The authors declare that all data supporting the findings of this study are available within the article and its supplementary information files. Microarray data have been deposited in GEO under accession number GSE122137.

The following data sets were generated

Article and author information

Author details

  1. Seyed Javad Rasouli

    Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    No competing interests declared.
  2. Mohamed El-Brolosy

    Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    No competing interests declared.
  3. Ayele Taddese Tsedeke

    Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7493-2511
  4. Anabela Bensimon-Brito

    Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    No competing interests declared.
  5. Parisa Ghanbari

    Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    No competing interests declared.
  6. Hans-Martin Maischein

    Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    No competing interests declared.
  7. Carsten Kuenne

    Bioinformatics Core Unit, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    No competing interests declared.
  8. Didier Y Stainier

    Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    For correspondence
    Didier.Stainier@mpi-bn.mpg.de
    Competing interests
    Didier Y Stainier, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0382-0026

Funding

The Leducq Foundation

  • Didier Y Stainier

Max-Planck-Gesellschaft (Open-access funding)

  • Didier Y Stainier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Deborah Yelon, University of California, San Diego, United States

Ethics

Animal experimentation: Animal experimentation: All animal experiments were done in accordance with institutional (MPG) and national ethical and animal welfare guidelines approved by the ethics committee for animal experiments at the Regierungspräsidium Darmstadt, Germany (permit numbers B2/1017, B2/1041, B2/1138 and B2/Anz. 1007).

Version history

  1. Received: June 4, 2018
  2. Accepted: December 24, 2018
  3. Accepted Manuscript published: December 28, 2018 (version 1)
  4. Version of Record published: January 11, 2019 (version 2)

Copyright

© 2018, Rasouli et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,398
    views
  • 460
    downloads
  • 51
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Seyed Javad Rasouli
  2. Mohamed El-Brolosy
  3. Ayele Taddese Tsedeke
  4. Anabela Bensimon-Brito
  5. Parisa Ghanbari
  6. Hans-Martin Maischein
  7. Carsten Kuenne
  8. Didier Y Stainier
(2018)
The flow responsive transcription factor Klf2 is required for myocardial wall integrity by modulating Fgf signaling
eLife 7:e38889.
https://doi.org/10.7554/eLife.38889

Share this article

https://doi.org/10.7554/eLife.38889

Further reading

    1. Developmental Biology
    Zhimin Xu, Zhao Wang ... Yingchuan B Qi
    Research Article

    Precise developmental timing control is essential for organism formation and function, but its mechanisms are unclear. In C. elegans, the microRNA lin-4 critically regulates developmental timing by post-transcriptionally downregulating the larval-stage-fate controller LIN-14. However, the mechanisms triggering the activation of lin-4 expression toward the end of the first larval stage remain unknown. We demonstrate that the transmembrane transcription factor MYRF-1 is necessary for lin-4 activation. MYRF-1 is initially localized on the cell membrane, and its increased cleavage and nuclear accumulation coincide with lin-4 expression timing. MYRF-1 regulates lin-4 expression cell-autonomously and hyperactive MYRF-1 can prematurely drive lin-4 expression in embryos and young first-stage larvae. The tandem lin-4 promoter DNA recruits MYRF-1GFP to form visible loci in the nucleus, suggesting that MYRF-1 directly binds to the lin-4 promoter. Our findings identify a crucial link in understanding developmental timing regulation and establish MYRF-1 as a key regulator of lin-4 expression.

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Samuel C Griffiths, Jia Tan ... Hsin-Yi Henry Ho
    Research Article Updated

    The receptor tyrosine kinase ROR2 mediates noncanonical WNT5A signaling to orchestrate tissue morphogenetic processes, and dysfunction of the pathway causes Robinow syndrome, brachydactyly B, and metastatic diseases. The domain(s) and mechanisms required for ROR2 function, however, remain unclear. We solved the crystal structure of the extracellular cysteine-rich (CRD) and Kringle (Kr) domains of ROR2 and found that, unlike other CRDs, the ROR2 CRD lacks the signature hydrophobic pocket that binds lipids/lipid-modified proteins, such as WNTs, suggesting a novel mechanism of ligand reception. Functionally, we showed that the ROR2 CRD, but not other domains, is required and minimally sufficient to promote WNT5A signaling, and Robinow mutations in the CRD and the adjacent Kr impair ROR2 secretion and function. Moreover, using function-activating and -perturbing antibodies against the Frizzled (FZ) family of WNT receptors, we demonstrate the involvement of FZ in WNT5A-ROR signaling. Thus, ROR2 acts via its CRD to potentiate the function of a receptor super-complex that includes FZ to transduce WNT5A signals.