1. Neuroscience
Download icon

Entrainment and maintenance of an internal metronome in supplementary motor area

  1. Jaime Cadena-Valencia
  2. Otto García-Garibay
  3. Hugo Merchant
  4. Mehrdad Jazayeri
  5. Victor de Lafuente  Is a corresponding author
  1. National Autonomous University of Mexico, Mexico
  2. Massachusetts Institute of Technology, United States
Research Article
  • Cited 7
  • Views 1,368
  • Annotations
Cite this article as: eLife 2018;7:e38983 doi: 10.7554/eLife.38983

Abstract

To prepare timely motor actions we constantly predict future events. Regularly repeating events are often perceived as a rhythm to which we can readily synchronize our movements, just as in dancing to music. However, the neuronal mechanisms underlying the capacity to encode and maintain rhythms are not understood. We trained nonhuman primates to maintain the rhythm of a visual metronome of diverse tempos and recorded neural activity in the supplementary motor area (SMA). SMA exhibited rhythmic bursts of gamma band (30-40 Hz) reflecting an internal tempo that matched the extinguished visual metronome. Moreover, gamma amplitude increased throughout the trial, providing an estimate of total elapsed time. Notably, the timing of gamma bursts and firing rate modulations allowed predicting whether monkeys were ahead or behind the correct tempo. Our results indicate that SMA uses dynamic motor plans to encode a metronome for rhythms and a stopwatch for total elapsed time.

Article and author information

Author details

  1. Jaime Cadena-Valencia

    Institute of Neurobiology, National Autonomous University of Mexico, Querétaro, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  2. Otto García-Garibay

    Institute of Neurobiology, National Autonomous University of Mexico, Querétaro, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  3. Hugo Merchant

    Institute of Neurobiology, National Autonomous University of Mexico, Queretaro, Mexico
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3488-9501
  4. Mehrdad Jazayeri

    McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Victor de Lafuente

    Institute of Neurobiology, National Autonomous University of Mexico, Queretaro, Mexico
    For correspondence
    lafuente@unam.mx
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1047-1354

Funding

Consejo Nacional de Ciencia y Tecnología (Fronteras de la Ciencia 196)

  • Hugo Merchant

Universidad Nacional Autónoma de México (PAPIIT IN207818)

  • Victor de Lafuente

Consejo Nacional de Ciencia y Tecnología (Ciencia Básica 254313)

  • Victor de Lafuente

Consejo Nacional de Ciencia y Tecnología (Ciencia Básica 236836)

  • Hugo Merchant

Consejo Nacional de Ciencia y Tecnología (Fronteras de la Ciencia 245)

  • Victor de Lafuente

Universidad Nacional Autónoma de México (PAPIIT IN202317)

  • Hugo Merchant

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Experimental procedures were approved by the Ethics in Research Committee of the Institute of Neurobiology (protocol number 046) and were in agreement with the principles outlined in the Guide for Care and Use of Laboratory Animals (National Institutes of Health).

Reviewing Editor

  1. Richard B Ivry, University of California, Berkeley, United States

Publication history

  1. Received: June 7, 2018
  2. Accepted: October 21, 2018
  3. Accepted Manuscript published: October 22, 2018 (version 1)
  4. Version of Record published: November 21, 2018 (version 2)

Copyright

© 2018, Cadena-Valencia et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,368
    Page views
  • 305
    Downloads
  • 7
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)