Abstract

High-grade serous ovarian cancer is characterized by extensive copy number alterations, among which the amplification of MYC oncogene occurs in nearly half of tumors. We demonstrate that ovarian cancer cells highly depend on MYC for maintaining their oncogenic growth, indicating MYC as a therapeutic target for this difficult-to-treat malignancy. However, targeting MYC directly has proven difficult. We screen small molecules targeting transcriptional and epigenetic regulation, and find that THZ1 - a chemical inhibiting CDK7, CDK12, and CDK13 - markedly downregulates MYC. Notably, abolishing MYC expression cannot be achieved by targeting CDK7 alone, but require the combined inhibition of CDK7, CDK12, and CDK13. In 11 patient derived xenografts models derived from heavily pre-treated ovarian cancer patients, administration of THZ1 induces significant tumor growth inhibition with concurrent abrogation of MYC expression. Our study indicates that targeting these transcriptional CDKs with agents such as THZ1 may be an effective approach for MYC-dependent ovarian malignancies.

Data availability

RNA sequencing data have been deposited in GEO under accession code GSE116282.

The following data sets were generated

Article and author information

Author details

  1. Mei Zeng

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  2. Nicholas P Kwiatkowski

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    Nicholas P Kwiatkowski, is an inventor on a patent application covering THZ1 (patent application number WO/2014/063068 A1), which is licensed to Syros Pharmaceuticals.
  3. Tinghu Zhang

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    Tinghu Zhang, is an inventor on a patent application covering THZ1 (patent application number WO/2014/063068 A1), which is licensed to Syros Pharmaceuticals.
  4. Behnam Nabet

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6738-4200
  5. Mousheng Xu

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  6. Yanke Liang

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  7. Chunshan Quan

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  8. Jinhua Wang

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  9. Mingfeng Hao

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  10. Sangeetha Palakurthi

    Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  11. Shan Zhou

    Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  12. Qing Zeng

    Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  13. Paul T Kirschmeier

    Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  14. Khyati Meghani

    Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  15. Alan L Leggett

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  16. Jun Qi

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  17. Geoffrey I Shapiro

    Early Drug Development Center, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  18. Joyce F Liu

    Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  19. Ursula A Matulonis

    Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  20. Charles Y Lin

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    For correspondence
    Charles.Y.Lin@bcm.edu
    Competing interests
    Charles Y Lin, is a consultant of Jnana Therapeutics and is a shareholder and inventor of IP licensed to Syros Pharmaceuticals.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9155-090X
  21. Panagiotis A Konstantinopoulos

    Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
    For correspondence
    Panagiotis_Konstantinopoulos@DFCI.HARVARD.EDU
    Competing interests
    No competing interests declared.
  22. Nathanael S Gray

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    For correspondence
    nathanael_gray@dfci.harvard.edu
    Competing interests
    Nathanael S Gray, is an inventor on a patent application covering THZ1 (patent application number WO/2014/063068 A1), which is licensed to Syros Pharmaceuticals.Is a scientific founder and equity holder of Syros Pharmaceuticals, C4 Therapeutics, Petra Pharma, Gatekeeper Pharmaceuticals, and Soltego.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5354-7403

Funding

National Cancer Institute (NIH R01 CA197336-02)

  • Nathanael S Gray

National Cancer Institute (NIH R01 CA179483-02)

  • Nathanael S Gray

U.S. Department of Defense (W81XWH-14-OCRP-OCACAOC140632 award)

  • Panagiotis A Konstantinopoulos

Cancer Prevention Research Institute of Texas (RR150093)

  • Charles Y Lin

National Cancer Institute (R01CA215452-01)

  • Charles Y Lin

American Cancer Society (Postdoctoral Fellowship PF-17-010-01-CDD)

  • Behnam Nabet

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were conducted in accordance with the animal use guidelines from the NIH and with protocols (Protocol # 11-044) approved by the Dana-Farber Cancer Institute Animal Care and Use Committee. Full details are described in Materials and Methods - Animal Studies.

Reviewing Editor

  1. Ross L Levine, Memorial Sloan Kettering Cancer Center, United States

Version history

  1. Received: June 8, 2018
  2. Accepted: November 11, 2018
  3. Accepted Manuscript published: November 13, 2018 (version 1)
  4. Version of Record published: November 23, 2018 (version 2)

Copyright

© 2018, Zeng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,522
    Page views
  • 1,040
    Downloads
  • 90
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mei Zeng
  2. Nicholas P Kwiatkowski
  3. Tinghu Zhang
  4. Behnam Nabet
  5. Mousheng Xu
  6. Yanke Liang
  7. Chunshan Quan
  8. Jinhua Wang
  9. Mingfeng Hao
  10. Sangeetha Palakurthi
  11. Shan Zhou
  12. Qing Zeng
  13. Paul T Kirschmeier
  14. Khyati Meghani
  15. Alan L Leggett
  16. Jun Qi
  17. Geoffrey I Shapiro
  18. Joyce F Liu
  19. Ursula A Matulonis
  20. Charles Y Lin
  21. Panagiotis A Konstantinopoulos
  22. Nathanael S Gray
(2018)
Targeting MYC dependency in ovarian cancer through inhibition of CDK7 and CDK12/13
eLife 7:e39030.
https://doi.org/10.7554/eLife.39030

Further reading

    1. Cancer Biology
    Gehad Youssef, Luke Gammon ... Adrian Biddle
    Research Article

    Cancer stem cells (CSCs) undergo epithelial-mesenchymal transition (EMT) to drive metastatic dissemination in experimental cancer models. However, tumour cells undergoing EMT have not been observed disseminating into the tissue surrounding human tumour specimens, leaving the relevance to human cancer uncertain. We have previously identified both EpCAM and CD24 as CSC markers that, alongside the mesenchymal marker Vimentin, identify EMT CSCs in human oral cancer cell lines. This afforded the opportunity to investigate whether the combination of these three markers can identify disseminating EMT CSCs in actual human tumours. Examining disseminating tumour cells in over 12,000 imaging fields from 74 human oral tumours, we see a significant enrichment of EpCAM, CD24 and Vimentin co-stained cells disseminating beyond the tumour body in metastatic specimens. Through training an artificial neural network, these predict metastasis with high accuracy (cross-validated accuracy of 87-89%). In this study, we have observed single disseminating EMT CSCs in human oral cancer specimens, and these are highly predictive of metastatic disease.

    1. Cancer Biology
    2. Medicine
    Dingyu Rao, Hua Lu ... Defa Huang
    Research Article

    Esophageal cancer (EC) is a fatal digestive disease with a poor prognosis and frequent lymphatic metastases. Nevertheless, reliable biomarkers for EC diagnosis are currently unavailable. Accordingly, we have performed a comparative proteomics analysis on cancer and paracancer tissue-derived exosomes from eight pairs of EC patients using label-free quantification proteomics profiling and have analyzed the differentially expressed proteins through bioinformatics. Furthermore, nano-flow cytometry (NanoFCM) was used to validate the candidate proteins from plasma-derived exosomes in 122 EC patients. Of the 803 differentially expressed proteins discovered in cancer and paracancer tissue-derived exosomes, 686 were up-regulated and 117 were down-regulated. Intercellular adhesion molecule-1 (CD54) was identified as an up-regulated candidate for further investigation, and its high expression in cancer tissues of EC patients was validated using immunohistochemistry, real-time quantitative PCR (RT-qPCR), and western blot analyses. In addition, plasma-derived exosome NanoFCM data from 122 EC patients concurred with our proteomic analysis. The receiver operating characteristic (ROC) analysis demonstrated that the AUC, sensitivity, and specificity values for CD54 were 0.702, 66.13%, and 71.31%, respectively, for EC diagnosis. Small interference (si)RNA was employed to silence the CD54 gene in EC cells. A series of assays, including cell counting kit-8, adhesion, wound healing, and Matrigel invasion, were performed to investigate EC viability, adhesive, migratory, and invasive abilities, respectively. The results showed that CD54 promoted EC proliferation, migration, and invasion. Collectively, tissue-derived exosomal proteomics strongly demonstrates that CD54 is a promising biomarker for EC diagnosis and a key molecule for EC development.