Abstract

High-grade serous ovarian cancer is characterized by extensive copy number alterations, among which the amplification of MYC oncogene occurs in nearly half of tumors. We demonstrate that ovarian cancer cells highly depend on MYC for maintaining their oncogenic growth, indicating MYC as a therapeutic target for this difficult-to-treat malignancy. However, targeting MYC directly has proven difficult. We screen small molecules targeting transcriptional and epigenetic regulation, and find that THZ1 - a chemical inhibiting CDK7, CDK12, and CDK13 - markedly downregulates MYC. Notably, abolishing MYC expression cannot be achieved by targeting CDK7 alone, but require the combined inhibition of CDK7, CDK12, and CDK13. In 11 patient derived xenografts models derived from heavily pre-treated ovarian cancer patients, administration of THZ1 induces significant tumor growth inhibition with concurrent abrogation of MYC expression. Our study indicates that targeting these transcriptional CDKs with agents such as THZ1 may be an effective approach for MYC-dependent ovarian malignancies.

Data availability

RNA sequencing data have been deposited in GEO under accession code GSE116282.

The following data sets were generated

Article and author information

Author details

  1. Mei Zeng

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  2. Nicholas P Kwiatkowski

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    Nicholas P Kwiatkowski, is an inventor on a patent application covering THZ1 (patent application number WO/2014/063068 A1), which is licensed to Syros Pharmaceuticals.
  3. Tinghu Zhang

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    Tinghu Zhang, is an inventor on a patent application covering THZ1 (patent application number WO/2014/063068 A1), which is licensed to Syros Pharmaceuticals.
  4. Behnam Nabet

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6738-4200
  5. Mousheng Xu

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  6. Yanke Liang

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  7. Chunshan Quan

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  8. Jinhua Wang

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  9. Mingfeng Hao

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  10. Sangeetha Palakurthi

    Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  11. Shan Zhou

    Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  12. Qing Zeng

    Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  13. Paul T Kirschmeier

    Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  14. Khyati Meghani

    Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  15. Alan L Leggett

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  16. Jun Qi

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  17. Geoffrey I Shapiro

    Early Drug Development Center, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  18. Joyce F Liu

    Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  19. Ursula A Matulonis

    Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  20. Charles Y Lin

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    For correspondence
    Charles.Y.Lin@bcm.edu
    Competing interests
    Charles Y Lin, is a consultant of Jnana Therapeutics and is a shareholder and inventor of IP licensed to Syros Pharmaceuticals.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9155-090X
  21. Panagiotis A Konstantinopoulos

    Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
    For correspondence
    Panagiotis_Konstantinopoulos@DFCI.HARVARD.EDU
    Competing interests
    No competing interests declared.
  22. Nathanael S Gray

    Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
    For correspondence
    nathanael_gray@dfci.harvard.edu
    Competing interests
    Nathanael S Gray, is an inventor on a patent application covering THZ1 (patent application number WO/2014/063068 A1), which is licensed to Syros Pharmaceuticals.Is a scientific founder and equity holder of Syros Pharmaceuticals, C4 Therapeutics, Petra Pharma, Gatekeeper Pharmaceuticals, and Soltego.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5354-7403

Funding

National Cancer Institute (NIH R01 CA197336-02)

  • Nathanael S Gray

National Cancer Institute (NIH R01 CA179483-02)

  • Nathanael S Gray

U.S. Department of Defense (W81XWH-14-OCRP-OCACAOC140632 award)

  • Panagiotis A Konstantinopoulos

Cancer Prevention Research Institute of Texas (RR150093)

  • Charles Y Lin

National Cancer Institute (R01CA215452-01)

  • Charles Y Lin

American Cancer Society (Postdoctoral Fellowship PF-17-010-01-CDD)

  • Behnam Nabet

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were conducted in accordance with the animal use guidelines from the NIH and with protocols (Protocol # 11-044) approved by the Dana-Farber Cancer Institute Animal Care and Use Committee. Full details are described in Materials and Methods - Animal Studies.

Copyright

© 2018, Zeng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,874
    views
  • 1,073
    downloads
  • 103
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mei Zeng
  2. Nicholas P Kwiatkowski
  3. Tinghu Zhang
  4. Behnam Nabet
  5. Mousheng Xu
  6. Yanke Liang
  7. Chunshan Quan
  8. Jinhua Wang
  9. Mingfeng Hao
  10. Sangeetha Palakurthi
  11. Shan Zhou
  12. Qing Zeng
  13. Paul T Kirschmeier
  14. Khyati Meghani
  15. Alan L Leggett
  16. Jun Qi
  17. Geoffrey I Shapiro
  18. Joyce F Liu
  19. Ursula A Matulonis
  20. Charles Y Lin
  21. Panagiotis A Konstantinopoulos
  22. Nathanael S Gray
(2018)
Targeting MYC dependency in ovarian cancer through inhibition of CDK7 and CDK12/13
eLife 7:e39030.
https://doi.org/10.7554/eLife.39030

Share this article

https://doi.org/10.7554/eLife.39030

Further reading

    1. Cancer Biology
    2. Medicine
    Anastasia D Komarova, Snezhana D Sinyushkina ... Marina V Shirmanova
    Research Article

    Heterogeneity of tumor metabolism is an important, but still poorly understood aspect of tumor biology. Present work is focused on the visualization and quantification of cellular metabolic heterogeneity of colorectal cancer using fluorescence lifetime imaging (FLIM) of redox cofactor NAD(P)H. FLIM-microscopy of NAD(P)H was performed in vitro in four cancer cell lines (HT29, HCT116, CaCo2 and CT26), in vivo in the four types of colorectal tumors in mice and ex vivo in patients’ tumor samples. The dispersion and bimodality of the decay parameters were evaluated to quantify the intercellular metabolic heterogeneity. Our results demonstrate that patients’ colorectal tumors have significantly higher heterogeneity of energy metabolism compared with cultured cells and tumor xenografts, which was displayed as a wider and frequently bimodal distribution of a contribution of a free (glycolytic) fraction of NAD(P)H within a sample. Among patients’ tumors, the dispersion was larger in the high-grade and early stage ones, without, however, any association with bimodality. These results indicate that cell-level metabolic heterogeneity assessed from NAD(P)H FLIM has a potential to become a clinical prognostic factor.

    1. Cancer Biology
    2. Epidemiology and Global Health
    Chelsea L Hansen, Cécile Viboud, Lone Simonsen
    Research Article

    Cancer is considered a risk factor for COVID-19 mortality, yet several countries have reported that deaths with a primary code of cancer remained within historic levels during the COVID-19 pandemic. Here, we further elucidate the relationship between cancer mortality and COVID-19 on a population level in the US. We compared pandemic-related mortality patterns from underlying and multiple cause (MC) death data for six types of cancer, diabetes, and Alzheimer’s. Any pandemic-related changes in coding practices should be eliminated by study of MC data. Nationally in 2020, MC cancer mortality rose by only 3% over a pre-pandemic baseline, corresponding to ~13,600 excess deaths. Mortality elevation was measurably higher for less deadly cancers (breast, colorectal, and hematological, 2–7%) than cancers with a poor survival rate (lung and pancreatic, 0–1%). In comparison, there was substantial elevation in MC deaths from diabetes (37%) and Alzheimer’s (19%). To understand these differences, we simulated the expected excess mortality for each condition using COVID-19 attack rates, life expectancy, population size, and mean age of individuals living with each condition. We find that the observed mortality differences are primarily explained by differences in life expectancy, with the risk of death from deadly cancers outcompeting the risk of death from COVID-19.