Specific lexico-semantic predictions are associated with unique spatial and temporal patterns of neural activity
Abstract
We used Magnetoencephalography (MEG) in combination with Representational Similarity Analysis to probe neural activity associated with distinct, item-specific lexico-semantic predictions during language comprehension. MEG activity was measured as participants read highly constraining sentences in which the final words could be predicted. Before the onset of the predicted words, both the spatial and temporal patterns of brain activity were more similar when the same words were predicted than when different words were predicted. The temporal patterns localized to the left inferior and medial temporal lobe. These findings provide evidence that unique spatial and temporal patterns of neural activity are associated with item-specific lexico-semantic predictions. We suggest that the unique spatial patterns reflected the prediction of spatially distributed semantic features associated with the predicted word, and that the left inferior/medial temporal lobe played a role in temporally 'binding' these features, giving rise to unique lexico-semantic predictions.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2 and 3.
Article and author information
Author details
Funding
Natural Science Foundation of China (31540079)
- Lin Wang
National Institute of Child Health and Human Development (R01 HD08252)
- Gina Kuperberg
James S. McDonnell Foundation Understanding Human Cognition Collaborative Award (220020448)
- Ole Jensen
Wellcome Trust Investigator Award in Science (207550)
- Ole Jensen
Royal Society (Wolfson Research Merit)
- Ole Jensen
Ministry of Science and Technology of the People's Republic of China (2012CB825500)
- Lin Wang
Ministry of Science and Technology of the People's Republic of China (2015CB351701)
- Lin Wang
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: The study was approved by the Institutional Review Board (IRB) of the Institute of Psychology, Chinese Academy of Sciences (H15037). Thirty-four students from the Beijing area were initially recruited by advertisement. All gave informed consent and were paid for their time.
Copyright
© 2018, Wang et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,462
- views
-
- 379
- downloads
-
- 45
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
The reward and novelty-related neuromodulator dopamine plays an important role in hippocampal long-term memory, which is thought to involve protein-synthesis-dependent synaptic plasticity. However, the direct effects of dopamine on protein synthesis, and the functional implications of newly synthesised proteins for synaptic plasticity, have not yet been investigated. We have previously reported that timing-dependent synaptic depression (t-LTD) can be converted into potentiation by dopamine application during synaptic stimulation (Brzosko et al., 2015) or postsynaptic burst activation (Fuchsberger et al., 2022). Here, we show that dopamine increases protein synthesis in mouse hippocampal CA1 neurons, enabling dopamine-dependent long-term potentiation (DA-LTP), which is mediated via the Ca2+-sensitive adenylate cyclase (AC) subtypes 1/8, cAMP, and cAMP-dependent protein kinase (PKA). We found that neuronal activity is required for the dopamine-induced increase in protein synthesis. Furthermore, dopamine induced a protein-synthesis-dependent increase in the AMPA receptor subunit GluA1, but not GluA2. We found that DA-LTP is absent in GluA1 knock-out mice and that it requires calcium-permeable AMPA receptors. Taken together, our results suggest that dopamine together with neuronal activity controls synthesis of plasticity-related proteins, including GluA1, which enable DA-LTP via a signalling pathway distinct from that of conventional LTP.
-
- Neuroscience
Brain states fluctuate between exploratory and consummatory phases of behavior. These state changes affect both internal computation and the organism’s responses to sensory inputs. Understanding neuronal mechanisms supporting exploratory and consummatory states and their switching requires experimental control of behavioral shifts and collecting sufficient amounts of brain data. To achieve this goal, we developed the ThermoMaze, which exploits the animal’s natural warmth-seeking homeostatic behavior. By decreasing the floor temperature and selectively heating unmarked areas, we observed that mice avoided the aversive state by exploring the maze and finding the warm spot. In its design, the ThermoMaze is analogous to the widely used water maze but without the inconvenience of a wet environment and, therefore, allows the collection of physiological data in many trials. We combined the ThermoMaze with electrophysiology recording, and report that spiking activity of hippocampal CA1 neurons during sharp-wave ripple events encode the position of mice. Thus, place-specific firing is not confined to locomotion and associated theta oscillations but persist during waking immobility and sleep at the same location. The ThermoMaze will allow for detailed studies of brain correlates of immobility, preparatory–consummatory transitions, and open new options for studying behavior-mediated temperature homeostasis.