Stepwise wiring of the Drosophila olfactory map requires specific Plexin B levels

  1. Jiefu Li
  2. Ricardo Guajardo
  3. Chuanyun Xu
  4. Bing Wu
  5. Hongjie Li
  6. Tongchao Li
  7. David J Luginbuhl
  8. Xiaojun Xie
  9. Liqun Luo  Is a corresponding author
  1. Howard Hughes Medical Institute, Stanford University, United States
  2. Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, United States

Abstract

The precise assembly of a neural circuit involves many consecutive steps. The conflict between a limited number of wiring molecules and the complexity of the neural network impels each molecule to execute multiple functions at different steps. Here, we examined the cell-type specific distribution of endogenous levels of axon guidance receptor Plexin B (PlexB) in the developing antennal lobe, the first olfactory processing center in Drosophila. We found that different classes of olfactory receptor neurons (ORNs) express PlexB at different levels in two wiring steps - axonal trajectory choice and subsequent target selection. In line with its temporally distinct patterns, the proper levels of PlexB control both steps in succession. Genetic interactions further revealed that the effect of high-level PlexB is antagonized by its canonical partner Sema2b. Thus, PlexB plays a multifaceted role in instructing the assembly of the Drosophila olfactory circuit through temporally-regulated expression patterns and expression level-dependent effects.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Jiefu Li

    Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ricardo Guajardo

    Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Chuanyun Xu

    Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Bing Wu

    Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Hongjie Li

    Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Tongchao Li

    Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. David J Luginbuhl

    Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Xiaojun Xie

    The Solomon H Snyder Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3459-6095
  9. Liqun Luo

    Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, United States
    For correspondence
    lluo@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5467-9264

Funding

National Institutes of Health (R01-DC005982)

  • Liqun Luo

Howard Hughes Medical Institute

  • Liqun Luo

Stanford University (Vanessa Kong Kerzner Graduate Fellowship)

  • Jiefu Li

Genentech Foundation (Genentech Foundation Predoctoral Fellowship)

  • Jiefu Li

Stanford University (Stanford Neuroscience Institute Interdisciplinary Scholar)

  • Hongjie Li

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,240
    views
  • 374
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jiefu Li
  2. Ricardo Guajardo
  3. Chuanyun Xu
  4. Bing Wu
  5. Hongjie Li
  6. Tongchao Li
  7. David J Luginbuhl
  8. Xiaojun Xie
  9. Liqun Luo
(2018)
Stepwise wiring of the Drosophila olfactory map requires specific Plexin B levels
eLife 7:e39088.
https://doi.org/10.7554/eLife.39088

Share this article

https://doi.org/10.7554/eLife.39088

Further reading

    1. Cell Biology
    2. Neuroscience
    Luis Sánchez-Guardado, Peyman Callejas Razavi ... Carlos Lois
    Research Article

    The assembly and maintenance of neural circuits is crucial for proper brain function. Although the assembly of brain circuits has been extensively studied, much less is understood about the mechanisms controlling their maintenance as animals mature. In the olfactory system, the axons of olfactory sensory neurons (OSNs) expressing the same odor receptor converge into discrete synaptic structures of the olfactory bulb (OB) called glomeruli, forming a stereotypic odor map. The OB projection neurons, called mitral and tufted cells (M/Ts), have a single dendrite that branches into a single glomerulus, where they make synapses with OSNs. We used a genetic method to progressively eliminate the vast majority of M/T cells in early postnatal mice, and observed that the assembly of the OB bulb circuits proceeded normally. However, as the animals became adults the apical dendrite of remaining M/Ts grew multiple branches that innervated several glomeruli, and OSNs expressing single odor receptors projected their axons into multiple glomeruli, disrupting the olfactory sensory map. Moreover, ablating the M/Ts in adult animals also resulted in similar structural changes in the projections of remaining M/Ts and axons from OSNs. Interestingly, the ability of these mice to detect odors was relatively preserved despite only having 1–5% of projection neurons transmitting odorant information to the brain, and having highly disrupted circuits in the OB. These results indicate that a reduced number of projection neurons does not affect the normal assembly of the olfactory circuit, but induces structural instability of the olfactory circuitry of adult animals.

    1. Developmental Biology
    2. Neuroscience
    Jayanarayanan Sadanandan, Sithara Thomas ... Peeyush Kumar T
    Research Article

    The blood-brain barrier (BBB) controls the movement of molecules into and out of the central nervous system (CNS). Since a functional BBB forms by mouse embryonic day E15.5, we reasoned that gene cohorts expressed in CNS endothelial cells (EC) at E13.5 contribute to BBB formation. In contrast, adult gene signatures reflect BBB maintenance mechanisms. Supporting this hypothesis, transcriptomic analysis revealed distinct cohorts of EC genes involved in BBB formation and maintenance. Here, we demonstrate that epigenetic regulator’s histone deacetylase 2 (HDAC2) and polycomb repressive complex 2 (PRC2) control EC gene expression for BBB development and prevent Wnt/β-catenin (Wnt) target genes from being expressed in adult CNS ECs. Low Wnt activity during development modifies BBB genes epigenetically for the formation of functional BBB. As a Class-I HDAC inhibitor induces adult CNS ECs to regain Wnt activity and BBB genetic signatures that support BBB formation, our results inform strategies to promote BBB repair.