Characterization of small fiber pathology in a mouse model of Fabry disease

Abstract

Fabry disease (FD) is a life-threatening X-linked lysosomal storage disorder caused by α-galactosidase A (α-GAL) deficiency. Small fiber pathology and pain are major FD symptoms of unknown pathophysiology. α-GAL deficient mice (GLA KO) age-dependently accumulate globotriaosylceramide (Gb3) in dorsal root ganglion (DRG) neurons paralleled by endoplasmic stress and apoptosis as contributors to skin denervation. Old GLA KO mice show increased TRPV1 protein in DRG neurons and heat hypersensitivity upon i.pl. capsaicin. In turn, GLA KO mice are protected from heat and mechanical hypersensitivity in neuropathic and inflammatory pain models based on reduced neuronal Ih and Nav1.7 currents. We show that in vitro α-GAL silencing increases intracellular Gb3 accumulation paralleled by loss of Nav1.7 currents, which is reversed by incubation with agalsidase-α and lucerastat. We provide first evidence of a direct Gb3 effect on neuronal integrity and ion channel function as potential mechanism underlying pain and small fiber pathology in FD.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Lukas Hofmann

    Department of Neurology, University of Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8397-1819
  2. Dorothea Hose

    Department of Neurology, University of Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Anne Grießhammer

    Department of Neurology, University of Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Robert Blum

    Institute of Clinical Neurobiology, University of Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Frank Döring

    Institute of Physiology, University of Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Sulayman Dib-Hajj

    Center for Neuroscience and Regeneration Research, Yale School of Medicine, West Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4137-1655
  7. Stephen Waxman

    Center for Neuroscience and Regeneration Research, Yale School of Medicine, West Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Claudia Sommer

    Department of Neurology, University of Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Erhard Wischmeyer

    Institute of Physiology, University of Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Nurcan Üçeyler

    Department of Neurology, University of Würzburg, Würzburg, Germany
    For correspondence
    ueceyler_n@ukw.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6973-6428

Funding

Interdisciplinary Center for Clinical Research Würzburg (N260)

  • Lukas Hofmann

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Our study was approved by the Bavarian State authorities (Regierung von Unterfranken, # 54/12).

Copyright

© 2018, Hofmann et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,389
    views
  • 547
    downloads
  • 44
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lukas Hofmann
  2. Dorothea Hose
  3. Anne Grießhammer
  4. Robert Blum
  5. Frank Döring
  6. Sulayman Dib-Hajj
  7. Stephen Waxman
  8. Claudia Sommer
  9. Erhard Wischmeyer
  10. Nurcan Üçeyler
(2018)
Characterization of small fiber pathology in a mouse model of Fabry disease
eLife 7:e39300.
https://doi.org/10.7554/eLife.39300

Share this article

https://doi.org/10.7554/eLife.39300

Further reading

    1. Neuroscience
    Omowumi Kayode
    Insight

    Investigating how the production of insulin is regulated in fruit flies reveals surprising insights that may help to better understand how this process unfolds in humans.

    1. Neuroscience
    Lenia Amaral, Xiaosha Wang ... Ella Striem-Amit
    Research Article

    Research on brain plasticity, particularly in the context of deafness, consistently emphasizes the reorganization of the auditory cortex. But to what extent do all individuals with deafness show the same level of reorganization? To address this question, we examined the individual differences in functional connectivity (FC) from the deprived auditory cortex. Our findings demonstrate remarkable differentiation between individuals deriving from the absence of shared auditory experiences, resulting in heightened FC variability among deaf individuals, compared to more consistent FC in the hearing group. Notably, connectivity to language regions becomes more diverse across individuals with deafness. This does not stem from delayed language acquisition; it is found in deaf native signers, who are exposed to natural language since birth. However, comparing FC diversity between deaf native signers and deaf delayed signers, who were deprived of language in early development, we show that language experience also impacts individual differences, although to a more moderate extent. Overall, our research points out the intricate interplay between brain plasticity and individual differences, shedding light on the diverse ways reorganization manifests among individuals. It joins findings of increased connectivity diversity in blindness and highlights the importance of considering individual differences in personalized rehabilitation for sensory loss.