1. Neuroscience
Download icon

Characterization of small fiber pathology in a mouse model of Fabry disease

  1. Lukas Hofmann
  2. Dorothea Hose
  3. Anne Grießhammer
  4. Robert Blum
  5. Frank Döring
  6. Sulayman Dib-Hajj
  7. Stephen Waxman
  8. Claudia Sommer
  9. Erhard Wischmeyer
  10. Nurcan Üçeyler  Is a corresponding author
  1. University of Würzburg, Germany
  2. Yale School of Medicine, United States
Research Article
  • Cited 11
  • Views 1,915
  • Annotations
Cite this article as: eLife 2018;7:e39300 doi: 10.7554/eLife.39300

Abstract

Fabry disease (FD) is a life-threatening X-linked lysosomal storage disorder caused by α-galactosidase A (α-GAL) deficiency. Small fiber pathology and pain are major FD symptoms of unknown pathophysiology. α-GAL deficient mice (GLA KO) age-dependently accumulate globotriaosylceramide (Gb3) in dorsal root ganglion (DRG) neurons paralleled by endoplasmic stress and apoptosis as contributors to skin denervation. Old GLA KO mice show increased TRPV1 protein in DRG neurons and heat hypersensitivity upon i.pl. capsaicin. In turn, GLA KO mice are protected from heat and mechanical hypersensitivity in neuropathic and inflammatory pain models based on reduced neuronal Ih and Nav1.7 currents. We show that in vitro α-GAL silencing increases intracellular Gb3 accumulation paralleled by loss of Nav1.7 currents, which is reversed by incubation with agalsidase-α and lucerastat. We provide first evidence of a direct Gb3 effect on neuronal integrity and ion channel function as potential mechanism underlying pain and small fiber pathology in FD.

Article and author information

Author details

  1. Lukas Hofmann

    Department of Neurology, University of Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8397-1819
  2. Dorothea Hose

    Department of Neurology, University of Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Anne Grießhammer

    Department of Neurology, University of Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Robert Blum

    Institute of Clinical Neurobiology, University of Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Frank Döring

    Institute of Physiology, University of Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Sulayman Dib-Hajj

    Center for Neuroscience and Regeneration Research, Yale School of Medicine, West Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4137-1655
  7. Stephen Waxman

    Center for Neuroscience and Regeneration Research, Yale School of Medicine, West Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Claudia Sommer

    Department of Neurology, University of Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Erhard Wischmeyer

    Institute of Physiology, University of Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Nurcan Üçeyler

    Department of Neurology, University of Würzburg, Würzburg, Germany
    For correspondence
    ueceyler_n@ukw.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6973-6428

Funding

Interdisciplinary Center for Clinical Research Würzburg (N260)

  • Lukas Hofmann

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Our study was approved by the Bavarian State authorities (Regierung von Unterfranken, # 54/12).

Reviewing Editor

  1. Allan Basbaum, University of California, San Francisco, United States

Publication history

  1. Received: June 18, 2018
  2. Accepted: October 11, 2018
  3. Accepted Manuscript published: October 17, 2018 (version 1)
  4. Version of Record published: November 26, 2018 (version 2)

Copyright

© 2018, Hofmann et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,915
    Page views
  • 376
    Downloads
  • 11
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Neuroscience
    Aniket Ghosh et al.
    Short Report Updated

    Ion channel complexes promote action potential initiation at the mammalian axon initial segment (AIS), and modulation of AIS size by recruitment or loss of proteins can influence neuron excitability. Although endocytosis contributes to AIS turnover, how membrane proteins traffic to this proximal axonal domain is incompletely understood. Neurofascin186 (Nfasc186) has an essential role in stabilising the AIS complex to the proximal axon, and the AIS channel protein Kv7.3 regulates neuron excitability. Therefore, we have studied how these proteins reach the AIS. Vesicles transport Nfasc186 to the soma and axon terminal where they fuse with the neuronal plasma membrane. Nfasc186 is highly mobile after insertion in the axonal membrane and diffuses bidirectionally until immobilised at the AIS through its interaction with AnkyrinG. Kv7.3 is similarly recruited to the AIS. This study reveals how key proteins are delivered to the AIS and thereby how they may contribute to its functional plasticity.

    1. Computational and Systems Biology
    2. Neuroscience
    Chen Chen et al.
    Research Article

    While animals track or search for targets, sensory organs make small unexplained movements on top of the primary task-related motions. While multiple theories for these movements exist—in that they support infotaxis, gain adaptation, spectral whitening, and high-pass filtering—predicted trajectories show poor fit to measured trajectories. We propose a new theory for these movements called energy-constrained proportional betting, where the probability of moving to a location is proportional to an expectation of how informative it will be balanced against the movement’s predicted energetic cost. Trajectories generated in this way show good agreement with measured trajectories of fish tracking an object using electrosense, a mammal and an insect localizing an odor source, and a moth tracking a flower using vision. Our theory unifies the metabolic cost of motion with information theory. It predicts sense organ movements in animals and can prescribe sensor motion for robots to enhance performance.