Characterization of small fiber pathology in a mouse model of Fabry disease

Abstract

Fabry disease (FD) is a life-threatening X-linked lysosomal storage disorder caused by α-galactosidase A (α-GAL) deficiency. Small fiber pathology and pain are major FD symptoms of unknown pathophysiology. α-GAL deficient mice (GLA KO) age-dependently accumulate globotriaosylceramide (Gb3) in dorsal root ganglion (DRG) neurons paralleled by endoplasmic stress and apoptosis as contributors to skin denervation. Old GLA KO mice show increased TRPV1 protein in DRG neurons and heat hypersensitivity upon i.pl. capsaicin. In turn, GLA KO mice are protected from heat and mechanical hypersensitivity in neuropathic and inflammatory pain models based on reduced neuronal Ih and Nav1.7 currents. We show that in vitro α-GAL silencing increases intracellular Gb3 accumulation paralleled by loss of Nav1.7 currents, which is reversed by incubation with agalsidase-α and lucerastat. We provide first evidence of a direct Gb3 effect on neuronal integrity and ion channel function as potential mechanism underlying pain and small fiber pathology in FD.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Lukas Hofmann

    Department of Neurology, University of Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8397-1819
  2. Dorothea Hose

    Department of Neurology, University of Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Anne Grießhammer

    Department of Neurology, University of Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Robert Blum

    Institute of Clinical Neurobiology, University of Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Frank Döring

    Institute of Physiology, University of Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Sulayman Dib-Hajj

    Center for Neuroscience and Regeneration Research, Yale School of Medicine, West Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4137-1655
  7. Stephen Waxman

    Center for Neuroscience and Regeneration Research, Yale School of Medicine, West Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Claudia Sommer

    Department of Neurology, University of Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Erhard Wischmeyer

    Institute of Physiology, University of Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Nurcan Üçeyler

    Department of Neurology, University of Würzburg, Würzburg, Germany
    For correspondence
    ueceyler_n@ukw.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6973-6428

Funding

Interdisciplinary Center for Clinical Research Würzburg (N260)

  • Lukas Hofmann

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Allan Basbaum, University of California, San Francisco, United States

Ethics

Animal experimentation: Our study was approved by the Bavarian State authorities (Regierung von Unterfranken, # 54/12).

Version history

  1. Received: June 18, 2018
  2. Accepted: October 11, 2018
  3. Accepted Manuscript published: October 17, 2018 (version 1)
  4. Version of Record published: November 26, 2018 (version 2)

Copyright

© 2018, Hofmann et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,201
    views
  • 527
    downloads
  • 41
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lukas Hofmann
  2. Dorothea Hose
  3. Anne Grießhammer
  4. Robert Blum
  5. Frank Döring
  6. Sulayman Dib-Hajj
  7. Stephen Waxman
  8. Claudia Sommer
  9. Erhard Wischmeyer
  10. Nurcan Üçeyler
(2018)
Characterization of small fiber pathology in a mouse model of Fabry disease
eLife 7:e39300.
https://doi.org/10.7554/eLife.39300

Share this article

https://doi.org/10.7554/eLife.39300

Further reading

    1. Neuroscience
    Taicheng Huang, Jia Liu
    Research Article

    The fact that objects without proper support will fall to the ground is not only a natural phenomenon, but also common sense in mind. Previous studies suggest that humans may infer objects’ stability through a world model that performs mental simulations with a priori knowledge of gravity acting upon the objects. Here we measured participants’ sensitivity to gravity to investigate how the world model works. We found that the world model on gravity was not a faithful replica of the physical laws, but instead encoded gravity’s vertical direction as a Gaussian distribution. The world model with this stochastic feature fit nicely with participants’ subjective sense of objects’ stability and explained the illusion that taller objects are perceived as more likely to fall. Furthermore, a computational model with reinforcement learning revealed that the stochastic characteristic likely originated from experience-dependent comparisons between predictions formed by internal simulations and the realities observed in the external world, which illustrated the ecological advantage of stochastic representation in balancing accuracy and speed for efficient stability inference. The stochastic world model on gravity provides an example of how a priori knowledge of the physical world is implemented in mind that helps humans operate flexibly in open-ended environments.

    1. Neuroscience
    Geoffroy Delamare, Yosif Zaki ... Claudia Clopath
    Short Report

    Representational drift refers to the dynamic nature of neural representations in the brain despite the behavior being seemingly stable. Although drift has been observed in many different brain regions, the mechanisms underlying it are not known. Since intrinsic neural excitability is suggested to play a key role in regulating memory allocation, fluctuations of excitability could bias the reactivation of previously stored memory ensembles and therefore act as a motor for drift. Here, we propose a rate-based plastic recurrent neural network with slow fluctuations of intrinsic excitability. We first show that subsequent reactivations of a neural ensemble can lead to drift of this ensemble. The model predicts that drift is induced by co-activation of previously active neurons along with neurons with high excitability which leads to remodeling of the recurrent weights. Consistent with previous experimental works, the drifting ensemble is informative about its temporal history. Crucially, we show that the gradual nature of the drift is necessary for decoding temporal information from the activity of the ensemble. Finally, we show that the memory is preserved and can be decoded by an output neuron having plastic synapses with the main region.