1. Neuroscience
Download icon

Consolidation alters motor sequence-specific distributed representations

  1. Basile Pinsard  Is a corresponding author
  2. Arnaud Boutin
  3. Ella Gabitov
  4. Ovidiu Lungu
  5. Habib Benali
  6. Julien Doyon  Is a corresponding author
  1. Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Canada
  2. Concordia University, Canada
  3. McGill University, Canada
Research Article
  • Cited 26
  • Views 1,310
  • Annotations
Cite this article as: eLife 2019;8:e39324 doi: 10.7554/eLife.39324

Abstract

FMRI studies investigating the acquisition of sequential motor skills in humans have revealed learning-related functional reorganizations of the cortico-striatal and cortico-cerebellar motor systems accompanied with an initial hippocampal contribution. Yet, the functional significance of these activity level changes remains ambiguous as they convey the evolution of both sequence-specific knowledge and unspecific task ability. Moreover, these changes do not specifically assess the occurrence of learning-related plasticity. To address these issues, we investigated local circuits tuning to sequence-specific information using multivariate distances between patterns evoked by consolidated or newly acquired motor sequences production. The results reveal that representations in dorsolateral striatum, prefrontal and secondary motor cortices are greater when executing consolidated sequences than untrained ones. By contrast, sequence representations in the hippocampus and dorsomedial striatum becomes less engaged. Our findings show, for the first time in humans, that complementary sequence-specific motor representations evolve distinctively during critical phases of skill acquisition and consolidation.

Data availability

Behavioral data analyzed and presented in the article as well as statistical maps of brain representational measure have been deposited on the Open Science Framework with the DOI 10.17605/OSF.IO/EPJ2V

The following data sets were generated

Article and author information

Author details

  1. Basile Pinsard

    Functional Neuroimaging Unit, Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Canada
    For correspondence
    basile.pinsard@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4391-3075
  2. Arnaud Boutin

    Functional Neuroimaging Unit, Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5696-2626
  3. Ella Gabitov

    Functional Neuroimaging Unit, Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Ovidiu Lungu

    Functional Neuroimaging Unit, Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Habib Benali

    Perform Center, Concordia University, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Julien Doyon

    Montreal Neurological Institute - McConnell Brain Imaging Center, McGill University, Montréal, Canada
    For correspondence
    julien.doyon@mcgill.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3788-4271

Funding

Canadian Institutes of Health Research (MOP 97830)

  • Basile Pinsard
  • Arnaud Boutin
  • Ella Gabitov
  • Julien Doyon

Ministère de l'Education Nationale, de l'Enseignement Superieur et de la Recherche (PhD scholarship)

  • Basile Pinsard

Sorbonne Université (PhD study abroad grant)

  • Basile Pinsard

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All participants provided written informed consent and received financial compensationfor their participation. This study protocol was approved by the Research Ethics Board of the ""Comité mixte d'éthique de la recherche - Regroupement en Neuroimagerie duQuébec"" (CMER-RNQ 13-14-011).

Reviewing Editor

  1. Timothy Verstynen, Carnegie Mellon University, United States

Publication history

  1. Received: June 25, 2018
  2. Accepted: March 16, 2019
  3. Accepted Manuscript published: March 18, 2019 (version 1)
  4. Version of Record published: April 12, 2019 (version 2)

Copyright

© 2019, Pinsard et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,310
    Page views
  • 247
    Downloads
  • 26
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Marta Maltese et al.
    Research Article

    Dopamine (DA) is a critical modulator of brain circuits that control voluntary movements, but our understanding of its influence on the activity of target neurons in vivo remains limited. Here, we use two-photon Ca2+ imaging to monitor the activity of direct and indirect-pathway spiny projection neurons (SPNs) simultaneously in the striatum of behaving mice during acute and prolonged manipulations of DA signaling. We find that increasing and decreasing DA biases striatal activity towards the direct and indirect pathways, respectively, by changing the overall number of SPNs recruited during behavior in a manner not predicted by existing models of DA function. This modulation is drastically altered in a model of Parkinson's disease. Our results reveal a previously unappreciated population-level influence of DA on striatal output and provide novel insights into the pathophysiology of Parkinson's disease.

    1. Neuroscience
    Yaoyao Hao et al.
    Tools and Resources Updated

    Goal-directed behaviors involve distributed brain networks. The small size of the mouse brain makes it amenable to manipulations of neural activity dispersed across brain areas, but existing optogenetic methods serially test a few brain regions at a time, which slows comprehensive mapping of distributed networks. Laborious operant conditioning training required for most experimental paradigms exacerbates this bottleneck. We present an autonomous workflow to survey the involvement of brain regions at scale during operant behaviors in mice. Naive mice living in a home-cage system learned voluntary head-fixation (>1 hr/day) and performed difficult decision-making tasks, including contingency reversals, for 2 months without human supervision. We incorporated an optogenetic approach to manipulate activity in deep brain regions through intact skull during home-cage behavior. To demonstrate the utility of this approach, we tested dozens of mice in parallel unsupervised optogenetic experiments, revealing multiple regions in cortex, striatum, and superior colliculus involved in tactile decision-making.