Consolidation alters motor sequence-specific distributed representations

  1. Basile Pinsard  Is a corresponding author
  2. Arnaud Boutin
  3. Ella Gabitov
  4. Ovidiu Lungu
  5. Habib Benali
  6. Julien Doyon  Is a corresponding author
  1. Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Canada
  2. Concordia University, Canada
  3. McGill University, Canada

Abstract

FMRI studies investigating the acquisition of sequential motor skills in humans have revealed learning-related functional reorganizations of the cortico-striatal and cortico-cerebellar motor systems accompanied with an initial hippocampal contribution. Yet, the functional significance of these activity level changes remains ambiguous as they convey the evolution of both sequence-specific knowledge and unspecific task ability. Moreover, these changes do not specifically assess the occurrence of learning-related plasticity. To address these issues, we investigated local circuits tuning to sequence-specific information using multivariate distances between patterns evoked by consolidated or newly acquired motor sequences production. The results reveal that representations in dorsolateral striatum, prefrontal and secondary motor cortices are greater when executing consolidated sequences than untrained ones. By contrast, sequence representations in the hippocampus and dorsomedial striatum becomes less engaged. Our findings show, for the first time in humans, that complementary sequence-specific motor representations evolve distinctively during critical phases of skill acquisition and consolidation.

Data availability

Behavioral data analyzed and presented in the article as well as statistical maps of brain representational measure have been deposited on the Open Science Framework with the DOI 10.17605/OSF.IO/EPJ2V

The following data sets were generated

Article and author information

Author details

  1. Basile Pinsard

    Functional Neuroimaging Unit, Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Canada
    For correspondence
    basile.pinsard@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4391-3075
  2. Arnaud Boutin

    Functional Neuroimaging Unit, Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5696-2626
  3. Ella Gabitov

    Functional Neuroimaging Unit, Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Ovidiu Lungu

    Functional Neuroimaging Unit, Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Habib Benali

    Perform Center, Concordia University, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Julien Doyon

    Montreal Neurological Institute - McConnell Brain Imaging Center, McGill University, Montréal, Canada
    For correspondence
    julien.doyon@mcgill.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3788-4271

Funding

Canadian Institutes of Health Research (MOP 97830)

  • Basile Pinsard
  • Arnaud Boutin
  • Ella Gabitov
  • Julien Doyon

Ministère de l'Education Nationale, de l'Enseignement Superieur et de la Recherche (PhD scholarship)

  • Basile Pinsard

Sorbonne Université (PhD study abroad grant)

  • Basile Pinsard

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All participants provided written informed consent and received financial compensationfor their participation. This study protocol was approved by the Research Ethics Board of the ""Comité mixte d'éthique de la recherche - Regroupement en Neuroimagerie duQuébec"" (CMER-RNQ 13-14-011).

Copyright

© 2019, Pinsard et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,988
    views
  • 410
    downloads
  • 892
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Basile Pinsard
  2. Arnaud Boutin
  3. Ella Gabitov
  4. Ovidiu Lungu
  5. Habib Benali
  6. Julien Doyon
(2019)
Consolidation alters motor sequence-specific distributed representations
eLife 8:e39324.
https://doi.org/10.7554/eLife.39324

Share this article

https://doi.org/10.7554/eLife.39324

Further reading

    1. Neuroscience
    Xiaoqian Yan, Sarah Shi Tung ... Kalanit Grill-Spector
    Research Article

    Organizing the continuous stream of visual input into categories like places or faces is important for everyday function and social interactions. However, it is unknown when neural representations of these and other visual categories emerge. Here, we used steady-state evoked potential electroencephalography to measure cortical responses in infants at 3–4 months, 4–6 months, 6–8 months, and 12–15 months, when they viewed controlled, gray-level images of faces, limbs, corridors, characters, and cars. We found that distinct responses to these categories emerge at different ages. Reliable brain responses to faces emerge first, at 4–6 months, followed by limbs and places around 6–8 months. Between 6 and 15 months response patterns become more distinct, such that a classifier can decode what an infant is looking at from their brain responses. These findings have important implications for assessing typical and atypical cortical development as they not only suggest that category representations are learned, but also that representations of categories that may have innate substrates emerge at different times during infancy.

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Desiree Böck, Maria Wilhelm ... Gerald Schwank
    Research Article

    Parkinson’s disease (PD) is a multifactorial disease caused by irreversible progressive loss of dopaminergic neurons (DANs). Recent studies have reported the successful conversion of astrocytes into DANs by repressing polypyrimidine tract binding protein 1 (PTBP1), which led to the rescue of motor symptoms in a chemically-induced mouse model of PD. However, follow-up studies have questioned the validity of this astrocyte-to-DAN conversion model. Here, we devised an adenine base editing strategy to downregulate PTBP1 in astrocytes and neurons in a chemically-induced PD mouse model. While PTBP1 downregulation in astrocytes had no effect, PTBP1 downregulation in neurons of the striatum resulted in the expression of the DAN marker tyrosine hydroxylase (TH) in non-dividing neurons, which was associated with an increase in striatal dopamine concentrations and a rescue of forelimb akinesia and spontaneous rotations. Phenotypic analysis using multiplexed iterative immunofluorescence imaging further revealed that most of these TH-positive cells co-expressed the dopaminergic marker DAT and the pan-neuronal marker NEUN, with the majority of these triple-positive cells being classified as mature GABAergic neurons. Additional research is needed to fully elucidate the molecular mechanisms underlying the expression of the observed markers and understand how the formation of these cells contributes to the rescue of spontaneous motor behaviors. Nevertheless, our findings support a model where downregulation of neuronal, but not astrocytic, PTBP1 can mitigate symptoms in PD mice.