Ryanodine receptor dispersion disrupts Ca2+ release in failing cardiac myocytes

  1. Terje R Kolstad
  2. Jonas van den Brink
  3. Niall MacQuaide
  4. Per Kristian Lunde
  5. Michael Frisk
  6. Jan Magnus Aronsen
  7. Einar Sjaastad Norden
  8. Alessandro Cataliotti
  9. Ivar Sjaastad
  10. Ole Mathias Sejersted
  11. Andrew G Edwards
  12. Glenn Terje Lines
  13. William Edward Louch  Is a corresponding author
  1. Oslo University Hospital, Norway
  2. Simula Reseach Laboratory, Norway
  3. University of Glasgow, United Kingdom
  4. Simula Research Laboratory, Norway

Abstract

Reduced cardiac contractility during heart failure (HF) is linked to impaired Ca2+ release from Ryanodine Receptors (RyRs). We investigated whether this deficit can be traced to nanoscale RyR reorganization. Using super-resolution imaging, we observed dispersion of RyR clusters in cardiomyocytes from post-infarction HF rats, resulting in more numerous, smaller clusters. Functional groupings of RyR clusters which produce Ca2+ sparks (Ca2+ release units, CRUs) also became less solid. An increased fraction of small CRUs in HF was linked to augmented 'silent' Ca2+ leak, not visible as sparks. Larger multi-cluster CRUs common in HF also exhibited low fidelity spark generation. When successfully triggered, sparks in failing cells displayed slow kinetics as Ca2+ spread across dispersed CRUs. During the action potential, these slow sparks protracted and desynchronized the overall Ca2+ transient. Thus, nanoscale RyR reorganization during HF augments Ca2+ leak and slows Ca2+ release kinetics, leading to weakened contraction in this disease.

Data availability

Source data files have been provided for Figures 2 , 4 and 6.All raw data acquired and analyzed in this study are publicly available in the following repository: https://github.com/TerjePrivate/Ryanodine_Receptor_Dispersion_during_Heart_Failure

Article and author information

Author details

  1. Terje R Kolstad

    Insitute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0589-5689
  2. Jonas van den Brink

    Simula Reseach Laboratory, Fornebu, Norway
    Competing interests
    The authors declare that no competing interests exist.
  3. Niall MacQuaide

    Institute of Cardiovascular Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Per Kristian Lunde

    Institute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
    Competing interests
    The authors declare that no competing interests exist.
  5. Michael Frisk

    Institute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
    Competing interests
    The authors declare that no competing interests exist.
  6. Jan Magnus Aronsen

    Institute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
    Competing interests
    The authors declare that no competing interests exist.
  7. Einar Sjaastad Norden

    Institute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
    Competing interests
    The authors declare that no competing interests exist.
  8. Alessandro Cataliotti

    Institute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
    Competing interests
    The authors declare that no competing interests exist.
  9. Ivar Sjaastad

    Institute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
    Competing interests
    The authors declare that no competing interests exist.
  10. Ole Mathias Sejersted

    Institute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8817-3296
  11. Andrew G Edwards

    Simula Research Laboratory, Fornebu, Norway
    Competing interests
    The authors declare that no competing interests exist.
  12. Glenn Terje Lines

    Simula Research Laboratory, Fornebu, Norway
    Competing interests
    The authors declare that no competing interests exist.
  13. William Edward Louch

    Institute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
    For correspondence
    w.e.louch@medisin.uio.no
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0511-6112

Funding

Horizon 2020 Framework Programme (Consolidator grant for WEL 647714)

  • Terje R Kolstad
  • William Edward Louch

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were approved by the Norwegian National Animal Research Authority (project license no. FOTS 5982, 7786), and were performed in accordance with the National Institute of Health guidelines (NIH publication No. 85-23, revised 2011) and European Directive 2010/63/EU.

Copyright

© 2018, Kolstad et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,050
    views
  • 90
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.39427

Further reading

    1. Cell Biology
    Kaili Du, Hongyu Chen ... Dan Li
    Research Article

    Niemann–Pick disease type C (NPC) is a devastating lysosomal storage disease characterized by abnormal cholesterol accumulation in lysosomes. Currently, there is no treatment for NPC. Transcription factor EB (TFEB), a member of the microphthalmia transcription factors (MiTF), has emerged as a master regulator of lysosomal function and promoted the clearance of substrates stored in cells. However, it is not known whether TFEB plays a role in cholesterol clearance in NPC disease. Here, we show that transgenic overexpression of TFEB, but not TFE3 (another member of MiTF family) facilitates cholesterol clearance in various NPC1 cell models. Pharmacological activation of TFEB by sulforaphane (SFN), a previously identified natural small-molecule TFEB agonist by us, can dramatically ameliorate cholesterol accumulation in human and mouse NPC1 cell models. In NPC1 cells, SFN induces TFEB nuclear translocation via a ROS-Ca2+-calcineurin-dependent but MTOR-independent pathway and upregulates the expression of TFEB-downstream genes, promoting lysosomal exocytosis and biogenesis. While genetic inhibition of TFEB abolishes the cholesterol clearance and exocytosis effect by SFN. In the NPC1 mouse model, SFN dephosphorylates/activates TFEB in the brain and exhibits potent efficacy of rescuing the loss of Purkinje cells and body weight. Hence, pharmacological upregulating lysosome machinery via targeting TFEB represents a promising approach to treat NPC and related lysosomal storage diseases, and provides the possibility of TFEB agonists, that is, SFN as potential NPC therapeutic candidates.

    1. Cell Biology
    Yan Song, Linda J Fothergill ... Gene W Yeo
    Research Article

    Dynamic interactions between gut mucosal cells and the external environment are essential to maintain gut homeostasis. Enterochromaffin (EC) cells transduce both chemical and mechanical signals and produce 5-hydroxytryptamine to mediate disparate physiological responses. However, the molecular and cellular basis for functional diversity of ECs remains to be adequately defined. Here, we integrated single-cell transcriptomics with spatial image analysis to identify 14 EC clusters that are topographically organized along the gut. Subtypes predicted to be sensitive to the chemical environment and mechanical forces were identified that express distinct transcription factors and hormones. A Piezo2+ population in the distal colon was endowed with a distinctive neuronal signature. Using a combination of genetic, chemogenetic, and pharmacological approaches, we demonstrated Piezo2+ ECs are required for normal colon motility. Our study constructs a molecular map for ECs and offers a framework for deconvoluting EC cells with pleiotropic functions.