Rotavirus VP3 targets MAVS for degradation to inhibit type III interferon expression in intestinal epithelial cells

  1. Siyuan Ding  Is a corresponding author
  2. Shu Zhu
  3. Lili Ren
  4. Ningguo Feng
  5. Yanhua Song
  6. Xiaomei Ge
  7. Bin Li
  8. Richard A Flavell
  9. Harry B Greenberg  Is a corresponding author
  1. Stanford University, United States
  2. University of Science and Technology of China, China
  3. Jiangsu Academy of Agricultural Sciences, China
  4. Yale University, United States

Abstract

Rotaviruses (RVs), a leading cause of severe diarrhea in young children1 and many mammalian species, have evolved multiple strategies to counteract the host innate immunity, specifically interferon (IFN) signaling through RV non-structural protein 1 (NSP1)2. However, whether RV structural components also subvert antiviral response remains under-studied. Here, we found that MAVS, critical for the host RNA sensing pathway upstream of IFN induction3, is degraded by the RV RNA methyl- and guanylyl-transferase (VP3) in a host-range-restricted manner. Mechanistically, VP3 localizes to the mitochondria and mediates the phosphorylation of a previously unidentified SPLTSS motif within the MAVS proline-rich region, leading to its proteasomal degradation and blockade of IFN-λ production in RV-infected intestinal epithelial cells. Importantly, VP3 inhibition of MAVS activity contributes to enhanced RV replication and to viral pathogenesis in vivo. Collectively, our findings establish RV VP3 as a viral antagonist of MAVS function in mammals and uncover a novel pathogen-mediated inhibitory mechanism of MAVS signaling.

Data availability

The data that support the findings of this study are available in the main text, main figures, supplementary figures or attached as Supplementary Tables 1 and 2. Additional information is available in the format of Source Data.

Article and author information

Author details

  1. Siyuan Ding

    Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, United States
    For correspondence
    syding@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Shu Zhu

    Institute of Immunology, University of Science and Technology of China, Hefei, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Lili Ren

    Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ningguo Feng

    Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Yanhua Song

    Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Xiaomei Ge

    Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Bin Li

    Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Richard A Flavell

    Department of Immunobiology, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4461-0778
  9. Harry B Greenberg

    Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, United States
    For correspondence
    hbgreen@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2128-9080

Funding

National Institute of Allergy and Infectious Diseases (R01 AI125249)

  • Harry B Greenberg

National Institute of Allergy and Infectious Diseases (U19 AI116484)

  • Harry B Greenberg

Thrasher Research Fund (Early Career Award)

  • Siyuan Ding

National Natural Science Foundation of China (81788104)

  • Shu Zhu

Howard Hughes Medical Institute

  • Richard A Flavell

National Institute of Allergy and Infectious Diseases (K99 AI135031)

  • Siyuan Ding

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. David M Knipe, Harvard Medical School, United States

Ethics

Animal experimentation: Age and sex-matched were used in this study. Mice were specific pathogen-free, maintained under a strict 12 hour light cycle, and given a regular chow diet ad libitum. All protocols used in this study were compliant with the Veterinary Medical Unit of Palo Alto VA Health Care System (PAVAHCS) and approved by the IACUC committee.

Version history

  1. Received: June 23, 2018
  2. Accepted: November 16, 2018
  3. Accepted Manuscript published: November 21, 2018 (version 1)
  4. Version of Record published: December 11, 2018 (version 2)

Copyright

© 2018, Ding et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,886
    Page views
  • 506
    Downloads
  • 49
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Siyuan Ding
  2. Shu Zhu
  3. Lili Ren
  4. Ningguo Feng
  5. Yanhua Song
  6. Xiaomei Ge
  7. Bin Li
  8. Richard A Flavell
  9. Harry B Greenberg
(2018)
Rotavirus VP3 targets MAVS for degradation to inhibit type III interferon expression in intestinal epithelial cells
eLife 7:e39494.
https://doi.org/10.7554/eLife.39494

Share this article

https://doi.org/10.7554/eLife.39494

Further reading

    1. Microbiology and Infectious Disease
    Chiara Andolina, Wouter Graumans ... Teun Bousema
    Research Article

    It is currently unknown whether all Plasmodium falciparum-infected mosquitoes are equally infectious. We assessed sporogonic development using cultured gametocytes in the Netherlands and naturally circulating strains in Burkina Faso. We quantified the number of sporozoites expelled into artificial skin in relation to intact oocysts, ruptured oocysts, and residual salivary gland sporozoites. In laboratory conditions, higher total sporozoite burden was associated with shorter duration of sporogony (p<0.001). Overall, 53% (116/216) of infected Anopheles stephensi mosquitoes expelled sporozoites into artificial skin with a median of 136 expelled sporozoites (interquartile range [IQR], 34–501). There was a strong positive correlation between ruptured oocyst number and salivary gland sporozoite load (ρ = 0.8; p<0.0001) and a weaker positive correlation between salivary gland sporozoite load and number of sporozoites expelled (ρ = 0.35; p=0.0002). In Burkina Faso, Anopheles coluzzii mosquitoes were infected by natural gametocyte carriers. Among salivary gland sporozoite positive mosquitoes, 89% (33/37) expelled sporozoites with a median of 1035 expelled sporozoites (IQR, 171–2969). Again, we observed a strong correlation between ruptured oocyst number and salivary gland sporozoite load (ρ = 0.9; p<0.0001) and a positive correlation between salivary gland sporozoite load and the number of sporozoites expelled (ρ = 0.7; p<0.0001). Several mosquitoes expelled multiple parasite clones during probing. Whilst sporozoite expelling was regularly observed from mosquitoes with low infection burdens, our findings indicate that mosquito infection burden is positively associated with the number of expelled sporozoites. Future work is required to determine the direct implications of these findings for transmission potential.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Veronica Teresa Ober, George Boniface Githure ... Michael Boshart
    Research Article

    Cyclic nucleotide binding domains (CNB) confer allosteric regulation by cAMP or cGMP to many signaling proteins, including PKA and PKG. PKA of phylogenetically distant Trypanosoma is the first exception as it is cyclic nucleotide-independent and responsive to nucleoside analogues (Bachmaier et al., 2019). Here, we show that natural nucleosides inosine, guanosine and adenosine are nanomolar affinity CNB ligands and activators of PKA orthologs of the important tropical pathogens Trypanosoma brucei, Trypanosoma cruzi, and Leishmania. The sequence and structural determinants of binding affinity, -specificity and kinase activation of PKAR were established by structure-activity relationship (SAR) analysis, co-crystal structures and mutagenesis. Substitution of two to three amino acids in the binding sites is sufficient for conversion of CNB domains from nucleoside to cyclic nucleotide specificity. In addition, a trypanosomatid-specific C-terminal helix (αD) is required for high affinity binding to CNB-B. The αD helix functions as a lid of the binding site that shields ligands from solvent. Selectivity of guanosine for CNB-B and of adenosine for CNB-A results in synergistic kinase activation at low nanomolar concentration. PKA pulldown from rapid lysis establishes guanosine as the predominant ligand in vivo in T. brucei bloodstream forms, whereas guanosine and adenosine seem to synergize in the procyclic developmental stage in the insect vector. We discuss the versatile use of CNB domains in evolution and recruitment of PKA for novel nucleoside-mediated signaling.