Integrated externally and internally generated task predictions Jointly guide cognitive control in prefrontal cortex

  1. Jiefeng Jiang  Is a corresponding author
  2. Anthony D Wagner
  3. Tobias Egner
  1. Stanford University, United States
  2. Duke University, United States

Abstract

Cognitive control proactively configures information processing to suit expected task demands. Predictions of forthcoming demand can be driven by explicit external cues or be generated internally, based on past experience (cognitive history). However, it is not known whether and how the brain reconciles these two sources of information to guide control. Pairing a probabilistic task-switching paradigm with computational modeling, we found that external and internally generated predictions jointly guide task preparation, with a bias for internal predictions. Using model-based neuroimaging, we then show that the two sources of task prediction are integrated in dorsolateral prefrontal cortex, and jointly inform a representation of the likelihood of a change in task demand, encoded in frontoparietal cortex. Upon task-stimulus onset, dorsomedial prefrontal cortex encoded the need for reactive task-set adjustment. These data reveal how the human brain integrates external cues and cognitive history to prepare for an upcoming task.

Data availability

Data Availability: Statistical maps for all whole-brain fMRI analyses have been uploaded to https://neurovault.org/collections/3732/ We will share raw behavioral and fMRI data (e.g., using openfmri.org), as well as Matlab source code (using github) for the task and key analyses once this manuscript is published.

Article and author information

Author details

  1. Jiefeng Jiang

    Department of Psychology, Stanford University, Stanford, United States
    For correspondence
    jiefeng.jiang@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4264-6382
  2. Anthony D Wagner

    Department of Psychology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0624-4543
  3. Tobias Egner

    Department of Psychology and Neuroscience, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7956-3241

Funding

National Institute of Mental Health (R01 MH097965)

  • Tobias Egner

National Institute of Aging (F32AG056080)

  • Jiefeng Jiang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Twenty-eight volunteers gave informed written consent, in accordance with institutional guidelines. This study was approved by the Duke University Health System Institutional Review Board.

Reviewing Editor

  1. David Badre, Brown University, United States

Publication history

  1. Received: June 23, 2018
  2. Accepted: August 14, 2018
  3. Accepted Manuscript published: August 16, 2018 (version 1)
  4. Version of Record published: September 6, 2018 (version 2)
  5. Version of Record updated: October 19, 2018 (version 3)

Copyright

© 2018, Jiang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,292
    Page views
  • 366
    Downloads
  • 19
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jiefeng Jiang
  2. Anthony D Wagner
  3. Tobias Egner
(2018)
Integrated externally and internally generated task predictions Jointly guide cognitive control in prefrontal cortex
eLife 7:e39497.
https://doi.org/10.7554/eLife.39497

Further reading

    1. Neuroscience
    Brian D Mueller, Sean A Merrill ... Erik M Jorgensen
    Research Article Updated

    Activation of voltage-gated calcium channels at presynaptic terminals leads to local increases in calcium and the fusion of synaptic vesicles containing neurotransmitter. Presynaptic output is a function of the density of calcium channels, the dynamic properties of the channel, the distance to docked vesicles, and the release probability at the docking site. We demonstrate that at Caenorhabditis elegans neuromuscular junctions two different classes of voltage-gated calcium channels, CaV2 and CaV1, mediate the release of distinct pools of synaptic vesicles. CaV2 channels are concentrated in densely packed clusters ~250 nm in diameter with the active zone proteins Neurexin, α-Liprin, SYDE, ELKS/CAST, RIM-BP, α-Catulin, and MAGI1. CaV2 channels are colocalized with the priming protein UNC-13L and mediate the fusion of vesicles docked within 33 nm of the dense projection. CaV2 activity is amplified by ryanodine receptor release of calcium from internal stores, triggering fusion up to 165 nm from the dense projection. By contrast, CaV1 channels are dispersed in the synaptic varicosity, and are colocalized with UNC-13S. CaV1 and ryanodine receptors are separated by just 40 nm, and vesicle fusion mediated by CaV1 is completely dependent on the ryanodine receptor. Distinct synaptic vesicle pools, released by different calcium channels, could be used to tune the speed, voltage-dependence, and quantal content of neurotransmitter release.

    1. Cell Biology
    2. Neuroscience
    Yu Wang, Meghan Lee Arnold ... Barth D Grant
    Research Article Updated

    Caenorhabditis elegans neurons under stress can produce giant vesicles, several microns in diameter, called exophers. Current models suggest that exophers are neuroprotective, providing a mechanism for stressed neurons to eject toxic protein aggregates and organelles. However, little is known of the fate of the exopher once it leaves the neuron. We found that exophers produced by mechanosensory neurons in C. elegans are engulfed by surrounding hypodermal skin cells and are then broken up into numerous smaller vesicles that acquire hypodermal phagosome maturation markers, with vesicular contents gradually degraded by hypodermal lysosomes. Consistent with the hypodermis acting as an exopher phagocyte, we found that exopher removal requires hypodermal actin and Arp2/3, and the hypodermal plasma membrane adjacent to newly formed exophers accumulates dynamic F-actin during budding. Efficient fission of engulfed exopher-phagosomes to produce smaller vesicles and degrade their contents requires phagosome maturation factors SAND-1/Mon1, GTPase RAB-35, the CNT-1 ARF-GAP, and microtubule motor-associated GTPase ARL-8, suggesting a close coupling of phagosome fission and phagosome maturation. Lysosome activity was required to degrade exopher contents in the hypodermis but not for exopher-phagosome resolution into smaller vesicles. Importantly, we found that GTPase ARF-6 and effector SEC-10/exocyst activity in the hypodermis, along with the CED-1 phagocytic receptor, is required for efficient production of exophers by the neuron. Our results indicate that the neuron requires specific interaction with the phagocyte for an efficient exopher response, a mechanistic feature potentially conserved with mammalian exophergenesis, and similar to neuronal pruning by phagocytic glia that influences neurodegenerative disease.