Biophysical models reveal the relative importance of transporter proteins and impermeant anions in chloride homeostasis

  1. Kira Michaela Düsterwald
  2. Christopher Brian Currin
  3. Richard Joseph Burman
  4. Colin J Akerman
  5. Alan R Kay
  6. Joseph Valentino Raimondo  Is a corresponding author
  1. University of Cape Town, South Africa
  2. University of Oxford, United Kingdom
  3. University of Iowa, United States
1 additional file

Additional files

All additional files

Any figure supplements, source code, source data, videos or supplementary files associated with this article are contained within this zip.

https://cdn.elifesciences.org/articles/39575/elife-39575-supp-v1.zip

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kira Michaela Düsterwald
  2. Christopher Brian Currin
  3. Richard Joseph Burman
  4. Colin J Akerman
  5. Alan R Kay
  6. Joseph Valentino Raimondo
(2018)
Biophysical models reveal the relative importance of transporter proteins and impermeant anions in chloride homeostasis
eLife 7:e39575.
https://doi.org/10.7554/eLife.39575