Adrb2 controls glucose homeostasis by developmental regulation of pancreatic islet vasculature

  1. Alexis M Ceasrine
  2. Eugene E Lin
  3. David N Lumelsky
  4. Radhika Iyer
  5. Rejji Kuruvilla  Is a corresponding author
  1. Johns Hopkins University, United States

Abstract

A better understanding of processes controlling the development and function of pancreatic islets is critical for diabetes prevention and treatment. Here, we reveal a previously unappreciated function for pancreatic β2-adrenergic receptors (Adrb2) in controlling glucose homeostasis by restricting islet vascular growth during development. Pancreas-specific deletion of Adrb2 results in glucose intolerance and impaired insulin secretion in mice, and unexpectedly, specifically in females. The metabolic phenotypes were recapitulated by Adrb2 deletion from neonatal, but not adult, b-cells. Mechanistically, Adrb2 loss increases production of Vascular Endothelial Growth Factor-A (VEGF-A) in female neonatal b-cells and results in hyper-vascularized islets during development, which in turn, disrupts insulin production and exocytosis. Neonatal correction of islet hyper-vascularization, via VEGF-A receptor blockade, fully rescues functional deficits in glucose homeostasis in adult mutant mice. These findings uncover a regulatory pathway that functions in a sex-specific manner to control glucose metabolism by restraining excessive vascular growth during islet development.

Data availability

All data generated or analyzed are included in the manuscript and supporting files

Article and author information

Author details

  1. Alexis M Ceasrine

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Eugene E Lin

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. David N Lumelsky

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Radhika Iyer

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Rejji Kuruvilla

    Department of Biology, Johns Hopkins University, Baltimore, United States
    For correspondence
    rkuruvilla@jhu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2851-675X

Funding

National Institutes of Health (R01DK108267)

  • Rejji Kuruvilla

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures relating to animal care and treatment conformed to The Johns Hopkins University Animal Care and Use Committee (ACUC) and NIH guidelines. All of the animals were handled according to approved institutional ACUC protocols (#MO17A14) of Johns Hopkins University

Reviewing Editor

  1. Lori Sussel, University of Colorado Denver, United States

Publication history

  1. Received: June 28, 2018
  2. Accepted: October 7, 2018
  3. Accepted Manuscript published: October 10, 2018 (version 1)
  4. Version of Record published: October 24, 2018 (version 2)

Copyright

© 2018, Ceasrine et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,502
    Page views
  • 321
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexis M Ceasrine
  2. Eugene E Lin
  3. David N Lumelsky
  4. Radhika Iyer
  5. Rejji Kuruvilla
(2018)
Adrb2 controls glucose homeostasis by developmental regulation of pancreatic islet vasculature
eLife 7:e39689.
https://doi.org/10.7554/eLife.39689

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Marta Perera et al.
    Research Article

    During embryonic development cells acquire identity at the same time as they are proliferating, implying that an intrinsic facet of cell fate choice requires coupling lineage decisions to rates of cell division. How is the cell cycle regulated to promote or suppress heterogeneity and differentiation? We explore this question combining time lapse imaging with single cell RNA-seq in the contexts of self-renewal, priming and differentiation of mouse embryonic stem cells (ESCs) towards the Primitive Endoderm lineage (PrE). Since ESCs are derived from the Inner Cell Mass of the mammalian blastocyst, ESCs in standard culture conditions are transcriptionally heterogeneous containing subfractions that are primed for either of the two ICM lineages, Epiblast and PrE. These subfractions represent dynamic states that can readily interconvert in culture, and the PrE subfraction is functionally primed for endoderm differentiation. Here we find that differential regulation of cell cycle can tip the balance between these primed populations, such that naïve ESC culture conditions promote Epiblast-like expansion and PrE differentiation stimulates the selective survival and proliferation of PrE-primed cells. In endoderm differentiation, we find that this change is accompanied by a counter-intuitive increase in G1 length that also appears replicated in vivo. While FGF/ERK signalling is a known key regulator of ESCs and PrE differentiation, we find it is not just responsible for ESCs heterogeneity, but also cell cycle synchronisation, required for the inheritance of similar cell cycles between sisters and cousins. Taken together, our results point to a tight relationship between transcriptional heterogeneity and cell cycle regulation in the context of lineage priming, with primed cell populations providing a pool of flexible cell types that can be expanded in a lineage-specific fashion while allowing plasticity during early determination.

    1. Developmental Biology
    2. Genetics and Genomics
    Ruhi Patel et al.
    Research Article

    Animal development requires coordination among cyclic processes, sequential cell fate specifications, and once-a-lifetime morphogenic events, but the underlying timing mechanisms are not well understood. Caenorhabditis elegans undergoes four molts at regular 8 to 10 hour intervals. The pace of the cycle is governed by PERIOD/lin-42 and other as-yet unknown factors. Cessation of the cycle in young adults is controlled by the let-7 family of microRNAs and downstream transcription factors in the heterochronic pathway. Here, we characterize a negative feedback loop between NHR-23, the worm homolog of mammalian retinoid-related orphan receptors (RORs), and the let-7 family of microRNAs that regulates both the frequency and finite number of molts. The molting cycle is decelerated in nhr-23 knockdowns and accelerated in let-7(−) mutants, but timed similarly in let-7(−) nhr-23(−) double mutants and wild-type animals. NHR-23 binds response elements (ROREs) in the let-7 promoter and activates transcription. In turn, let-7 dampens nhr-23 expression across development via a complementary let-7-binding site (LCS) in the nhr-23 3′ UTR. The molecular interactions between NHR-23 and let-7 hold true for other let-7 family microRNAs. Either derepression of nhr-23 transcripts by LCS deletion or high gene dosage of nhr-23 leads to protracted behavioral quiescence and extra molts in adults. NHR-23 and let-7 also coregulate scores of genes required for execution of the molts, including lin-42. In addition, ROREs and LCSs isolated from mammalian ROR and let-7 genes function in C. elegans, suggesting conservation of this feedback mechanism. We propose that this feedback loop unites the molting timer and the heterochronic gene regulatory network, possibly by functioning as a cycle counter.